Chemistry in the Troposphere:
Photochemical Smog

Overview:

- The atmosphere is an *oxidizing* system
- Tendency of organic components to be oxidized (both natural and anthropogenic)
 - $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$
 - C_2H_6 called: Volatile Organic Compound
 - VOCs
- Ideally, we would like to have complete oxidation of the hydrocarbon, the VOC in as few steps as possible.
- Toxic intermediates are formed towards complete oxidation to $CO_2 + H_2O$
- Ozone (O$_3$) is formed as a byproduct of VOC oxidation
- Central role of the hydroxyl radical, OH*, in initiating oxidation
- Interaction between VOC oxidation and NO$_x$ chemistry
- Conditions for photochemical smog formation
 - strong sunlight
 - $T > \sim 20^\circ C$
 - Polluted air, *i.e.*, greater than background levels of both VOCs and NO$_x$
 - (Note Table 3.3, text, p. 81)
Photochemical rate constants: \(J(X) \)

- Only two important tropospheric examples:

 \[\text{\(O_3 + hv \ (\lambda < 325 \text{ nm}) \rightarrow O_2^* + O^* \)} \]

 \[\text{\(NO_2 + hv \ (\lambda < 400 \text{ nm}) \rightarrow NO + O \)} \]

 - \(O^* \) is an excited state oxygen atom

To estimate photochemical *rate* constants we have to know:

- The strength (intensity) of the photon flux, \(I_0 \): photons per second per cm\(^2\) of the Earth's surface. \(I_0 \) is a function of \(\lambda \) and zenith angle, \(Z \)

- The efficiency of photon absorption yielding excited state molecules, e.g., \(\sigma \times \text{[NO2]} \). \(\sigma \) is the absorption cross section

 \[\text{\(\sigma \) (cm\(^2\) per molecule: compare Beer's law)} \]

 \[\text{\(\sigma \) is a function of wavelength \(\lambda \) (nm)} \]

- The efficiency with which the excited \(NO_2 \) molecules dissociate, \(\phi \), is the quantum yield of dissociation.

- \(\phi \) is also a function of wavelength \(\lambda \), and is dimensionless.

\[
\phi = \frac{\text{# of molecules dissociated}}{\text{# of photons absorbed}}
\]

\[
\left(I_o \times \sigma \times \phi \right) = J, S^{-1}
\]

- Must be summed over all \(\lambda \) relevant to the specific Zenith Angle

- Rate of photolysis (of \(NO_2 \)) = \(\left(I_o \times \sigma \times \phi \right) \times \text{[NO}_2] \)
Tropospheric formation and reactions of OH radical

- Formation by photolysis of ozone
 - UV-B region (295-325 nm)
 - $\text{O}_3 + \text{hv} (\lambda < 325 \text{ nm}) \rightarrow \text{O}_2^* + \text{O}^*$
 - $\text{O}^* + \text{H}_2\text{O} \rightarrow 2\text{OH}^*$
- The reaction $\text{O}_3 + \lambda \nu \rightarrow \text{O}_2 + \text{O}$ also occurs but does not lead anywhere because ground state O cannot react with H$_2$O (explain why)
- In darkness, concentration of OH falls to near zero (no photolysis of ozone) because OH is so reactive that it disappears in seconds

Tropospheric concentration of OH

- Global average = 9.7×10^5 molecules cm$^{-3}$ (day/night; winter/summer; poles/tropics)
- Experimental measurements are difficult, but day-time maxima in southern Canada $\sim 10^5$ molecules cm$^{-3}$ in winter and $\sim 10^7$ molecules cm$^{-3}$ in summer with high ozone
Characteristic reactions of OH radicals

- Abstract hydrogen atoms
 - Prototype reaction:
 - $\text{CH}_4 + \text{OH}^\cdot \rightarrow \text{CH}_3^\cdot + \text{H}_2\text{O}$
- Add to double bonds
 - Prototype reactions:
 - $\text{H}_2\text{C}=$CH$_2 + \text{OH} \rightarrow \text{HOCH}_2=CH_2^\cdot$
 - $\text{O}=$S=O + OH \rightarrow HO–SO$_2^\cdot$
- Terminate with another odd-electron species
 - Prototype reaction:
 - $\text{NO}_2 + \text{OH} \rightarrow \text{HNO}_3$

Before considering oxidation of VOCs, we need to consider NO$_x$ chemistry

Please note that OH implies the free radical form, whereas OH indicates hydroxyl ion in solution.
The formation of ozone: the NO/NO₂ cycle

- **Clean troposphere:** no significant parallel VOC oxidation

- **Formation of ozone:**
 - \(\text{NO}_2 + \text{hv} (\lambda < 400 \text{ nm}) \rightarrow \text{NO} + \text{O} \) \hspace{1cm} (1)
 - \(\text{O} + \text{O}_2 \rightarrow \text{O}_3 \) (fast reaction) \hspace{1cm} (2)

- **Destruction of ozone:**
 - \(\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \) \hspace{1cm} (3)

- **Net reaction** = "null cycle", in which sunlight is degraded to heat

- **Steady state:** NO₂ formed and destroyed at equal rates
 - \(k_3.[\text{NO}].[\text{O}_3] = J(\text{NO}_2).[\text{NO}_2] \)
 - Reaction (2) is fast
 - or \([\text{O}_3] = J(\text{NO}_2).[\text{NO}_2] / k_3.[\text{NO}] \) \hspace{1cm} [A]

- **Steady state – not equilibrium!** – achieved in minutes in strong sunlight. \([\text{O}_3]_{ss}\) depends on solar intensity of solar radiation, therefore, it also depends on latitude, season, and time of day. Because they are rapidly inter-converted, the sum \([\text{NO}] + [\text{NO}_2]\) is known as NOₓ.

Question: What happens at night? Would we realize more NO₂ or less NO₂?
Consider Equation \([A]\) in some more detail…

- Actual concentrations of \(O_3\) in urban air are larger than Eq. \([A]\) predicts, therefore, other sources must be present.
 - So-called “Ground Level Ozone”

- Photo dissociation of \(NO_2\) is the only important reaction by which \(O_3\) is formed in the troposphere.

- In the polluted troposphere, ozone is formed as a byproduct of VOC oxidation.
 - Specifically \(NO\) is converted to \(NO_2\) by reactions that do not consume \(O_3\)

- Null Cycle
 - \(NO_2 + hv (\lambda < 420 \text{ nm}) \rightarrow NO + O\)
 - \(O + O_2 \rightarrow O_3\)
 - \(NO + O_3 \rightarrow NO_2 + O_2\)

- Therefore, in order to build up \([O_3]\), we need different oxidants for \(NO\) besides \(O_3\)
 - Peroxy radicals \(R–O–O^*\) are the culprit here

- Every \(NO\) molecule that is oxidized to \(NO_2\) while bypassing Reaction (3) yields one additional ozone molecule, because the “extra” \(NO_2\) is photolyzed to restore the steady state
Peroxy radical R-O-O^* chemistry

- RO_2 (or HO_2) + NO \rightarrow RO + NO$_2$
- Modified scheme
 - NO$_2$ + hv (λ < 400 nm) \rightarrow NO + O
 - O + O$_2$ \rightarrow O$_3$
 - NO + RO$_2$ \rightarrow NO$_2$ + RO

 ▪ Net Reaction: RO_2 + O$_2$ \rightarrow RO + O$_3$

- Conclusion:
 - If NO is oxidized by O$_3$, then the steady state predicted by Equation [A] is valid. If NO is oxidized by peroxy radicals, there will be an excess of O$_3$ compared with Equation [A].

- Source of peroxy radicals
 - Addition of O$_2$ to a carbon-based radical

 ▪ Example:
 - CH$_4$ + OH* \rightarrow CH$_3^*$ + H$_2$O
 - CH$_3^*$ + O$_2$ \rightarrow CH$_3$–O–O*
Summary:

- NO\textsubscript{X} is indispensable to the formation of O\textsubscript{3} in the troposphere (the only other tropospheric source of ozone is downwards transport from the stratosphere) (not good)

- Background levels of NO\textsubscript{X} are very low yielding low background levels of O\textsubscript{3}; polluted urban air has higher levels of NO\textsubscript{X} resulting in enhanced levels of O\textsubscript{3}

- Peroxy radicals (R-O-O) are formed as intermediates in the oxidation of VOCs

- In polluted air (NO\textsubscript{X} present), ROO radicals oxidize NO; O\textsubscript{3} is formed when the steady state process of NO:NO\textsubscript{2} is restored

- VOC oxidation in polluted air results in O\textsubscript{3}
Oxidation of Methane to Formaldehyde as a prototype [only] VOC (simplified)

\[
\text{CH}_4 + \text{OH}^\cdot \rightarrow \text{H}_2\text{O} + \text{CH}_3^\cdot \quad (1)
\]

\[
\text{OH}^\cdot \text{ reactivity} \gg \text{RO}_2, \text{HO}_2, \text{NO}_3
\]

\[
\text{CH}_3^\cdot + \text{O}_2 \rightarrow \text{CH}_3\text{-O-O}^\cdot \quad (2)
\]

\[
\text{CH}_3\text{-O-O}^\cdot + \text{NO} \rightarrow \text{CH}_3\text{-O}^\cdot + \text{NO}_2 \quad (3A)
\]

\[
\text{CH}_3\text{-O-O}^\cdot + \text{RO}_2^\cdot \rightarrow \text{CH}_3\text{-O}^\cdot + \text{RO}^\cdot + \text{O}_2 \quad (3B)
\]

\[
\text{R} = \text{CH}_3 \text{ or H}
\]

\[
\text{CH}_3\text{-O}^\cdot + \text{O}_2 \rightarrow \text{HCHO} + \text{HO}_2 \quad (4)
\]

(HCHO is formaldehyde – a nasty air pollutant)

\[
\text{CH}_3\text{-O}^\cdot \text{ reacts much faster with } \text{O}_2 \text{ than it abstracts H from CH}_4
\]

- Reactions 3A and 3B are in competition
 - Both always occur
What happens when Reaction 3B predominates?

- Low [NOₓ]
- Unpolluted Air

\[
\text{CH}_4 + \text{OH}^\cdot \rightarrow \text{H}_2\text{O} + \text{CH}_3^\cdot \\
\text{(1)}
\]

\[
\text{CH}_3^\cdot + \text{O}_2 \rightarrow \text{CH}_3\text{-O-O}^\cdot \\
\text{(2)}
\]

\[
\text{CH}_3\text{-O-O}^\cdot + \text{HO}_2^\cdot \rightarrow \text{CH}_3\text{-O}^\cdot + \text{OH}^\cdot + \text{O}_2 \\
\text{(3B)}
\]

\[
\text{CH}_3\text{-O}^\cdot + \text{O}_2 \rightarrow \text{HCHO} + \text{HO}_2 \\
\text{(4)}
\]

Net reaction I:

\[
\text{CH}_4 + \text{O}_2 \rightarrow \text{HCHO} + \text{H}_2\text{O}
\]

Under these conditions, methane production produces no ozone as a byproduct
What happens when Reaction 3A predominates

- High [NO$_x$]
- Polluted air

\[
\text{CH}_4 + \text{OH}^\cdot \rightarrow \text{H}_2\text{O} + \text{CH}_3^\cdot \quad (1)
\]

\[
\text{CH}_3^\cdot + \text{O}_2 \rightarrow \text{CH}_3-\text{O}-\text{O}^\cdot \quad (2)
\]

\[
\text{CH}_3-\text{O}-\text{O}^\cdot + \text{NO} \rightarrow \text{CH}_3-\text{O}^\cdot + \text{NO}_2 \quad (3A)
\]

\[
\text{CH}_3-\text{O}^\cdot + \text{O}_2 \rightarrow \text{HCHO} + \text{HO}_2 \quad (4)
\]

Net Reaction II:

\[
\text{CH}_4 + 2\text{O}_2 + \text{OH} + \text{NO} \rightarrow \text{HCHO} + \text{NO}_2 + \text{H}_2\text{O} + \text{HO}_2
\]
• The Net Reaction is inconvenient to use because of the consideration of reactive intermediates in the equation.

\[\text{CH}_4 + 2\text{O}_2 + \text{OH} + \text{NO} \rightarrow \text{HCHO} + \text{NO}_2 + \text{H}_2\text{O} + \text{HO}_2 \]

• Need to end the cycles with non-reactive intermediates.

• Note
 - \(\text{NO} \rightarrow \text{NO}_2 \)
 - \(\text{OH} \rightarrow \text{HO}_2 \)

• Recycle
 - \(\text{NO}_2 \rightarrow \text{NO} \)
 - \(\text{NO}_2 + \text{O}_2 + \text{hv} \rightarrow \text{NO} + \text{O}_3 \)

• Recycle
 - \(\text{HO}_2 \rightarrow \text{OH} \)
 - \(\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2 \), then
 - \(\text{NO}_2 + \text{O}_2 + \text{hv} \rightarrow \text{NO} + \text{O}_3 \)

New Net Reaction II (simplified):

\[\text{CH}_4 + 4\text{O}_2 \rightarrow \text{HCHO} + 2\text{O}_3 + \text{H}_2\text{O} \]

Therefore, one mole of methane (oxidation) produces two moles of ozone as a byproduct
Volatile Organic Carbons (VOCs)

- Different VOCs react differently with OH^•^.
- There is a greater potential to form ozone locally when the reaction between a VOC and OH^•^ is fast.
- This is particularly true if the t½ for the VOCs are less than a few hours.
- Alkenes and aromatics (H₂C=CH₂)
 - OH reacts by addition
- Alkanes
 - OH reacts by H abstraction
- Alkenes react more quickly than alkanes (important)
- Biogenic hydrocarbons (alkenes) are highly reactive.
- Can you think of a common source of VOCs?
 - Gasoline tanks (common)
 - Every time a gas tank is filled up, the volume of gasoline vapour above the gas at the bottom of the tank is displaced and released to the environment.
Photochemical Ozone Creation Potential (POCP)

- Developed by the Organization for Economic Cooperation and Development (OECD)
- An approximate approach to rank VOCs in terms of ozone forming potential based on the emission of equal masses of the VOC and ethylene

\[
POCP = \frac{k(VOC)}{k(C_2H_2)} \cdot \frac{M(C_2H_2)}{M(VOC)} \cdot 100
\]

@ 298 K, \(k(\text{ethylene}) = 8.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>(k_{\text{OH}})</th>
<th>POCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Butanone</td>
<td>(8.9 \times 10^{-13})</td>
<td>4</td>
</tr>
<tr>
<td>Toluene</td>
<td>(6.0 \times 10^{-12})</td>
<td>21</td>
</tr>
<tr>
<td>3-Methylpentane</td>
<td>(5.7 \times 10^{-12})</td>
<td>22</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>(7.5 \times 10^{-12})</td>
<td>29</td>
</tr>
<tr>
<td>(p)-Xylene</td>
<td>(2.4 \times 10^{-11})</td>
<td>74</td>
</tr>
<tr>
<td>Ethylene</td>
<td>(8.5 \times 10^{-12})</td>
<td>100</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>(3.7 \times 10^{-11})</td>
<td>145</td>
</tr>
<tr>
<td>Styrene</td>
<td>(5.5 \times 10^{-11})</td>
<td>165</td>
</tr>
<tr>
<td>Propylene</td>
<td>(2.6 \times 10^{-11})</td>
<td>204</td>
</tr>
<tr>
<td>Isoprene</td>
<td>(9.0 \times 10^{-11})</td>
<td>1000</td>
</tr>
</tbody>
</table>
Sources of nitrogen oxides in the troposphere

- The primary pollutant is always NO:
 - $\text{N}_2 + \text{O}_2 \leftrightarrow 2\text{NO}$
 - $\Delta H^o = +180 \text{ kJ}$ (as written)
- Natural background of NO$_X$ is $<1 \text{ ppb}_v$
 - Lightning.
 - All combustion processes $\uparrow [\text{NO}_X]$ above background
 - US data
 - Transportation 40-45%
 - Power generation, 30-35%
 - Industrial, 20%

Low [O3] in major cities at night

$\text{NO}_2 + \text{hv (}\lambda < 400 \text{ nm)} \rightarrow \text{NO} + \text{O}$ daytime 1
$\text{O} + \text{O}_2 \rightarrow \text{O}_3$ 2
$\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$ day and night 3

- NO formation continues, but ozone formation shuts down
 - Result: $\downarrow [\text{O}_3]$
Low \([O_3]\) in major cities during pollution episodes

- High NO emissions consume \(O_3\)
 - \(NO + O_3 \rightarrow NO_2 + O_2\)
- \(NO_2\) consumes \(OH\)
 - \(NO_2 + OH \rightarrow HNO_3 (g)\)
- Low \(OH\) means a low rate of VOC oxidation
 - Low production of \(O_3\) as a byproduct

Highest \(O_3\) occurs down-wind of city centre in the suburbs
The problem of advection

- Vancouver or Los Angeles
 - Westerly airflow, "upwind" air is "clean". Excess ozone above the nocturnal boundary layer dissipates (because of winds) by morning, when mixing brings in clean air.

- Southwestern Ontario
 - Upwind air brings high [O$_3$] from Detroit, Windsor, Ohio Valley.
 - Air above the nocturnal boundary is ozone-rich.
 - [O$_3$] at ground level falls at night due to NO + O$_3$ reaction, but morning mixing raises [O$_3$] because air is still ozone-rich. Data from CN Tower.
The effect of temperature

- Ozone episodes are promoted by high temperature.
 - PAN (peroxyacetyl nitrate) and related congeners act as storage reservoirs for NO\textsubscript{x}.
 - Formation of PAN (text, p. 82)

\[
\begin{align*}
O_2 \\
\text{CH}_3\text{CHO} + \text{OH} & \rightarrow \text{CH}_3\text{C}=\text{O} \rightarrow \text{CH}_3\text{C}(=\text{O})\text{O}-\text{O} \\
& \downarrow \text{NO}_2 \\
& \text{CH}_3\text{C}(=\text{O})\text{O}-\text{O}-\text{NO}_2
\end{align*}
\]

- PAN has a large E_{act} for decomposition (113 kJ/mol)
 - $\text{CH}_3\text{C}(=\text{O})\text{O}-\text{O}-\text{NO}_2 \rightarrow \text{CH}_3\text{C}(=\text{O})\text{O}-\text{O} + \text{NO}_2$

- Tying up NO\textsubscript{2} inhibits O\textsubscript{3} formation
 - NO\textsubscript{2} is the precursor
 - At high T, less NO\textsubscript{2} is tied up, so more O\textsubscript{3} forms
Tropospheric chemistry at night

- NO$_3^\cdot$ (nitrate radical) initiates chain reactions
- It is much less reactive than OH
 - NO$_3^\cdot$ + R–H \rightarrow HNO$_3$ + R$^\cdot$ \rightarrow etc
 - NO$_3^\cdot$ is indirectly made from NO$_2$
 - NO$_2$ + O$_3$ \rightarrow NO$_3^\cdot$ \leftrightarrow N$_2$O$_5$
- NO$_3^\cdot$ is readily decomposed by sunlight
- N$_2$O$_5$ is not decomposed by sunlight

“Researchers have determined that chemical processes at night remove atmospheric nitrogen oxides (NO$_X$) in the marine boundary layer off the New England coast, which has the effect of reducing ozone formation the next day. Nocturnal nitrate radical (NO$_3$) and dinitrogen pentoxide (N$_2$O$_5$) form nitric acid, which rapidly deposits on the surface, making these chemical species unavailable for ozone-forming the next day.”
Emission controls

- Consideration: lower emissions of NO\textsubscript{X} and VOCs by adjusting air-fuel ratios and using catalytic converters (text, pp. 85-89)

- The failure to control ground level ozone (US National Research Council Report, 1991) due to underestimation of VOC inventories, notably biogenic hydrocarbons, e.g., isoprene, CH\textsubscript{2}=C(CH\textsubscript{3})–CH=CH\textsubscript{2}
 - Terpenes from trees

- Concept: either NO\textsubscript{X} or VOCs can be the limiting reactant
Problem compounds in urban/suburban air pollution

- Primary pollutants
 - VOCs
 - Polycyclic aromatic compounds (PAHs)
 - NO\textsubscript{x}
 - Recall EPA priority airborne pollutants CO, SO\textsubscript{2}
 - More later
- Secondary pollutants
 - Ozone
 - Aldehydes
 - Organic nitrates
 - Nitro-PAHs
• Mutagenic substances in urban air (Legsdins et al., 1994)
Particles in the atmosphere (text, pp. 89-97)

- Particles will exhibit different settling rates depending on a number of variables
- Intuitively, very small and least dense particles will remain suspended in air the longest
- Concerns:
 - Light scattering – cooling
 - Contrails from airplanes – warming (9/11)
 - Condensation and Trail
Daily, thousands of planes form tremendous amounts of ice particles, CO₂, NOₓ and other gases, soot and aerosols at high altitudes.

Aviation contributes to global warming in various ways.

- Adsorb polar substances *e.g.*, HNO₃ (g) → ultimate sink via wet or dry deposition

- Human toxicity for “respirable particles”
 - PM10, PM2.5 fractions (µm)

Text: Section 3.7 Level of understanding of the influence of particles

Particle Characteristics (in a Gas)

- Stokes’s Law

 \[
 \text{Settling Rate} = \frac{g \times d^2 \times (\rho_{\text{part}} - \rho_{\text{air}})}{18\eta}
 \]

 g= acceleration due to gravity

 d= particle diameter

 (Regular and irregularly shaped particles)

 \rho= density of particle and air