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body as isotropic elastic materials that have a surface tensidrubble pressure, relative to that predicted by the YL equa-
and resist both compression and shear forces. Compressitinon. Also, depending on the values Bf y, ande,, Pg can,
forces act to reduce the volume of a material without changfrom the basis of these equations, be negative for some in-
ing its shape. Shear forces act to change the shape of a m@rmediate values dRg. In other words, the GYL equation
terial without changing its volume. The elastic behavior of apredicts that there may be soft materials in which both small
simple liquid, such as water, involves no resistance to sheand large, but not intermediate sized gas bubbles are ob-
forces its Oshear modulusO is zdsat strongly resists com- served. This unusual situation stems from the opposing ef-
pression its Omodulus of compressionO is lardeis the fects onPg of surface tension and shear resistance. The
shear modulus, which is entirely absent in simple liquids,former exerts a positive effect d?, and is relatively impor-
such as water, that gives materials whatever rigidity and intant for small radii. The latter is relatively important for in-
trinsic shape they may have. Since most tissues in the bodgrmediate radii, where it exerts a negative effect R
do have intrinsic shapes, it is expected that their shear modwlso, it was shown in Refl that the range of radii over
lus will be germane to the pressure and stability of inert gasvhich negativePg values were predicted could be quite large
bubbles within them. e.g.,0 10 or more. This indicates, intuitively at least,
that any bubbles found in such materials would tend to be
small, since though mechanically stable once formed, large
Il. THEORY bubbles may be unlikely to form.

The YoungbLaplaceYL equation often called simply
the Laplace equationfor the pressure of a mechanically 5 Partitioning the medium
stable gas bubble suspended in a Ruid medium was recently
generalized. The generalization rendered the YL equation ap- We Will require expressions for the relative Gibbs free
plicable to elastic materials that have intrinsic shape due t§n€ergy, and for the bubble pressiitg, for a composite sys-
their having a nonzero shear modufuor materials that t€m comprised of a number of gas bubbles suspended in, and
have a surface tension but no shear modulus, such as ordil €quilibrium with an elastic medium. This requires that the

nary liquids, the YL equation 18 medium be partitioned over the bubblgs in the system. A
B straightforward method, taken from solid state phys$its
Pg=P+2yRs. 1 was used for this. Each bubble is associated with, and is at

In Eq. 1, Pg, P, 7, and Ry are the gas pressure in the the center of, a spherical shell or OdomainO of the elastic

H 15 . .

bubble, the constant external pressure applied to the mediurfiledium.” We assume that the bubble densities will be low
the surface tension, and the bubble radius, respectively. TH0ugh so that the bubbles do not directly inuence one
generalized-YLGYL equation for the pressure of a bubble another. The inner and outer radii of the elastic domain are
in a soft elastic material with both a surface tension and 4he bubble radiuRg and Ry, respectively, where the latter,
shear modulus, to which a constant external pressure is agPeasured from the center of the bubble, is givet'by
plied, was found to be Ry = Ry/vY% = RyNg>. 4

Pe=Plv +dae; 1+ vt v +2y/Rg 2 Ry the system radius, is given by
where Rs= NgR:’+ 3V,%4m 1+3a, 5. 5

fv  lt+ep/ltar, a 4ef3Ky The term &, will be determined from boundary conditions.

It provides the so-called Ovolumetric strainO in the medium,
which is the fractional change in the volume of the medium
that accompanies its deformation, due to different pressures
acting on its surfaces. Here this arises due to the formation of
In the aboveg, is a constante1 /3 for gases at ordinary to bubbles of pressurg within the medium, while the external
moderately high pressures, R, andV,° are the volume or applied pressure iB.***

fraction occupied by the bubble, the radius of the system Having decomposed the system irftlg spherical sub-
bubble+medium measured from the center of the bubble, Systems, the bubble pressure and the elastic free energy of
and the initial undeformed volume of the spherical shell of the soft material in the subsystems, are determined in the
elastic material that surrounds the bubble, respectively. Alsxact same way as was done for the single-bubble case.
&, andK, are the shear modulus and the modulus of com-Therefore, the derivation for these functions that is given
pression of the medium, respectivéﬁs Because of accu below is brief. It is important to bear in mind, however, that
racy concernsbelow, we will restrict out calculations to While the solution is essentially exact fidg=1, the solution

soft deformable materials that are only very slightly rigid, for for Ng>1, is approximate.

which @, O 10°® . For a, in this range, the GYL equation
simplibpes to

PB Pe 482/3 levw +2')//RB 3

v= Rg/Rs®, RE=RS3+ 3V,%47 1+3a,,

ay = 482a1V‘ P/ 3K2+4V82 .

B. The bubble pressure

We use boldface letters for vectors, and the usual con-
Sincee,>0, it is seen from Eq.3 that the effect of a low vention for representing tensofsWe use spherical coordi
degree of shear resistance in the medium is to lower theates, summation over the coordinate lakel®, and ¢ is
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understood with respect to all sufpxes that appear twice in ahown that these extremities correspond to the lower and
given term, and the summation sign over tensor sufbxes igspper critical bubble radii of the systerR;, and Ry,
omitted. respectively. Therefore, though approximate, Ed. does

The general condition for mechanical stability of an iso-not involve the uncontrolled approximation of extrapolating
tropic material that is deformed by forces applied to its surfrom low to high ». Eq. 11 is anchored exactly at both
faces is™ extremities ofv.

There are several routes by which this approximation
can be obtained. One is based on making the displacement
where u is the displacement vector and x is PoissonOs vector stationary at each domain boundary, where the inRu-
ratio ™™ Because of spherical symmetry of the subsystemsgnce of central enclosed bubble is presumed to vanish. Mak-
the displacement vectors both in the bubble and in its suring u, 2 R, stationary is equivalent to making the radial
rounding elastic shell are purely radial. Consequently the&component of the strain tensor at the domain boundary
second term in Eq.6 vanishes, and the radial components u_“ R, zero. This approximation is physically sensible,
of the displacement vectors that satisfy E6|. are obtained since whenu,, 2 Ry, =0, the material at the domain bound-

21e ygraddivue 12y curlcurlu =0, 6

from ary is radially undeformedUnder linear response, the radial
uri r=ar+br? i=1,2. 7 ;:r:)mpor?(lalnltg of the stress and strain tensors are related
rough =

In the aboveu, "'t is the radial component af in phasei
and a; and b; are constantsi.e., independent of the radial O
distancer to be determined from the boundary conditions. \yhich for the materials of interest here reduces almost ex-
Using i=1,2 torepresent the bubble and its spherical 3¢y 1ot
shell, respectively, it is readily showithat b;=0, and pre ) )
vided the bubble pressure is in a range for which the com- 0, “ 1 28U, “ r  P. 13
pressibility factor of the gas in it remains pnitg=<1/3. . 2 A .
The remaining two constanta, andb,, and the bubble US”Enuglterioat_eor(;Etché) E’ fllv?sSoEuC:I-ir}el d. in Ref 16
pressurePg, require three boundary conditions for their de- Equations8 , 9 , and 1? are independent so. thét they

termination. Given the subdivision of the full system iNg 1 be combined and solved simultaneouslvearb.. and
spherical subsystems, two of these conditions are exact, a The result is yagrns,
B.

the third is approximate. The exact conditions are

21 =2eU, %1 +9aK, x/ 1+yx 12

Url Rs :urz Rs 8 Pg=Pf v +4a;e, 1« vf v +2y/Rg,
PB:. o_rr2 RB +2y/RB 9 fv 1+a2/ 1+a21/ X ap 482/3K2;
Equation 8 stems from the requirement of continuity of the v= Rg/Ry 3, 14

displacement vector across the gas bubble/elastic shell inter-
face, and Eq.9 reRects the balance of forces normal to the RE=RS+ 34m V,UNg 1+3a, ;
surface at this interface. The two terms on the right-hand side
of Eq. 9 give the elastic and surface tension contributions
to the total pressure acting on the bubble, respectively. In Eq.
9, 0, 2 Rg , and y are the radial component of the stress
tenor in the soft material, and the surface tension, respec-
tively, both at this interface. Equation 14 is isomorphic with Eq. 2, and correctly re-
A third boundary condition, applicable at the sub- duces to it forNg=1. Equation 14, which generalizes Eq.
systemOs domain radigg is needed, and an approximation 2 from Nz=1 to Ng=1, will be used for the bubble pres-

is used for it. ForNg=1 or Ry=Rs, the exact boundary sure in the expressions for the free energy for systems in
condition which was used previously which Ng> 1.

P=e0,?Rs. 10

a, = 482a17/' P/ 3K2+4V82 )

b2:R83 a°® a , a1:‘1/3.

This is an expression of the balance of normal forces at th% . . .
. . Gibbs free energy of elastic deformation
outer radius of the system where the constant external pres-

sure P is applied. The derivation of an expression for the Gibbs free en-
The approximation we will use here fdig>1 is ergy of elastic deformation of the soft material associated
P «0.?R, 11 with each bubble, is done exactly as was done for the single

r "

bubble! except that the upper limit of integration is now the
This means that the negative of the radial component of thdomain radiusR,, rather than to the system radidRs
stress tensor at each domainOs outer r&jjus set equalto  Ref.17 Ry=Rg/ NBl’3 . The expressions used for the stress
the applied external pressure. A desirable property of thisind strain tensor componentak2 and uy, z respectively,
approximation, is that it is exact at both extremities of theand the details of the contraction and the integration are as in
range of bubble volume fractiong whereNg=1. It will be  Ref. 1. Thus, from
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dOeias=* VoUNg Uy 2 doy 2, traverses a series of states of conditional or partial equilib-
rium, before reaching the Pnal equilibrium state. Partial or
we get conditional equilibrium in TST refers to the condition
o ik Ro ) 5 wherein each reacting species is at all times assumed to be
AQeas=* Vo /Ng Uy “ do equilibrated with respect to a MaxwellDBoltzmann
7ik Re distribution!®*° but not with respect to its concentration in
=6 V,YNg sp a;0 @, 2 1+ 12 . 15 the thermodynamically most stable state of the system. It is

. only in the Pnal most stable equilibrium state, that the con-
The value ofa, «1/3 and the expressions for Ry, anday, centrations reach their respective equilibrium values.

thbat ari given mth IIEq.tM ,G'abrs ufsed n Eq'll‘:é' Int theh We are looking for the possible presence of free energy
above, Adeias IS the e1astic 151bbs 1ree energy due 1o sheal o s ¢ gmg|| gas bubbles which, if present, would provide

resistance, attributed _to the elas_tic d_omain associated Witﬁl]em with a degree of longevity. Equations for mass balance,
?nf(;]iu%jaglrefhzr?urn ;;St,er]eiselsai\rsnt;yab bs free energy of th?ne.chanical stability, and equal_ity of chemical pptentials of
N, in the two phases can be written for all the points along a
AGgs= 6V,08, @ ¢ @, 2 1+ 12 . 16  conditional equilibrium path, so that it is possible to fully
characterize all the composite states that comprise this path.
It is however not possible to simultaneously satisfy the con-
itions of mass balance, mechanical stability, and equality of
chemical potentials, over a continuous range of bubble radii
using a single bubblesee Ref.2 and below. In order to

A key property of Eqg. 16 that will be germane to the exis-
tence of metastable free energy wells for small gas bubble
in elastic materials, is its prediction of near constancy o
AGg,s for a given e,. Specibcally, we will havea,/a;

4
107 so that generate a continuous range of bubble radii at which the
AGgs 2/3 Vzosz 1e 1 16 bubbles are in states of conditional equilibrium, an additional
variableNthe number of bubbles in the system at each radius

2/3 V2082 16" Ng Rs Nmust be introduced. It will be shown thal; Rg is

a single-valued function dRg.
As a consequence, we need an equation for the relative
Gibbs free energy of a composite system comprisedof
gas bubbles each of radil®, suspended in, and in condi-
We use the process of dissolution from a supersaturateional equilibrium with a surrounding elastic medium. This
solution as a means of creating a system with an excesxpression will be obtained from the Gibbs free energy
guantity of gas, relative to what is present at saturation irchange that accompanies the dissolution process in which a
solution. Our interest is in the stable and metastable bubbleuper-supersaturated one-phase system gives off some of its
distributions that arise when excess gas coexists in equilibexcess dissolved gas as bubbles. The process is taken to oc-
rium, or conditional equilibriumbelow, with a soft elastic cur at a bxed temperatule a bxed external pressuie and
material. within a closed system. These conditions, together with a
Consider the dissolution process from an initial statefurther correction discussed below, are required in order that
comprised of a supersaturated solution of dissolved in a the modibed Gibbs free energy function that will be used be
soft elastic medium. We need an expression for the Gibba valid measure of the relative stability of the states being
free energy of dissolution from this state to all possible two-generated and compared.
phase equilibrium composite states that can form when ex- The required relative system Gibbs free energies are ob-
cess gaseous /Nis released to the medium as gaseoudained by subtracting the Gibbs free energy of the initial
bubbles. The term OequilibriumO here refers to a conditionaliper-saturated state from that of the composite stafés.
or partial equilibrium. This means that the bubbles are ininitial supersaturated solution can be created by a step de-
mechanical and thermal equilibrium with the surroundingcompression applied to a pre-existing saturated solution that
medium, and the chemical potentials of M the bubbles had been maintained at the relatively elevated pressure
and the surrounding medium are eqti&t™® but the bubbles P, P,,>P . As originally formulated, the Gibbs free energy
are constrained to some specibed raéigisThe global mini-  function provides an exact measure of the relative stability of
mum over all possible conditional minima provides the moststates, provided the states being compared have the same
stable possible state for the system as a whole. A macraiumber of moles of each component, and are all at the same
scopic system will always be found in this Pnal state, givertemperature and pressure as the corresponding external tem-
sufpcient time %20 perature and pressure reservgit$?%2+2428 More precisely,
These states of conditional or partial equilibrium are infor the Gibbs free energy function to be a valid measure of
the class of extrapolated or interpolated states that arise ithe relative stability of a composite system, all the compo-
statistical kinetic$’ They are postulated to exist on a short nent subsystems of the composite system must have the same
time-scale relative to the long time-scale in Thermodynamypressure as the external reservoir pres%f}%(?'mms In the
ics. Frenkel discussed what he called the Oextended thermaroblem under consideration however, the actual bubble
dynamic theoryO of these states, and gave several exampfaessurePg will generally differ from the external pressuie
of them?' The best-known example is transition-state because of surface tension and shear modulus effeets
theory®?>2% TST . This theory also deals with a system that Egs. 2, 3, and 14 . Therefore the Min the bubbles will

Eq. 16" follows from Eq. 16’ since we will haver=<.03

D. Gibbs free energy of dissolution
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not generally be at the required constant external presdure Gy, Rg,P are the Gibbs free energies in the initial state, and
As described in more detail elsewhérd,this complication the corrected or rescaled Gibbs free energy in the bnal
can be dealt with by a two-part corrective procedure. Firststate, respectivelylN; is the total number of molecules of
one uses CallenOs reformulated postulatoryype j in the system, ang; , . is the chemical potential of
thermodynamics in place of GibbsO original formulation. componentj in phasea at the conditions dePned by the
This obviates the Gibbs requirement of a reversible pativariables in parenthest&!® Also, Gg,sRs,P  and
along which the pressure of all the subsystems in the comG,,s Rg,P are the total elastic and surface free energies in
posite state are at the constant reservoir pressun&h is  the Pnal state, respectivel@, Rg,P is the total Gibbs free
here impossible Second, for purposes of the composite stateenergy of the soft material in the Pnal state in the absence of
free energy evaluation, one corrects rescalesthe chemi-  shear resistance, aii@@); Rg,P is the total corrected or res-
cal potential of the gas in the bubbles to what it would be ifcaled Gibbs free energy of the gas phase in the Pnal state.
theztz)fztzlble pressure wer® as opposed to the actual value As indicated above, it is obtained from
Pg.”“~“" The product of this rescaled chemical potential and _
the actual number of gas molecules provides the gas phase Gg ReiP =Nag Re,P 126 Re,P
contribution to the free energy of the full compound systemi.e., from the product of the actual number of gas molecules
The actual number of gas molecules is determined from thén all the bubbles, and the re-scaled chemical potential of the
equality of chemical potentials of Nn the two phases, with gas u,4 Rs,P , evaluated aP notPg .>***%’ Thus, both
each phase considered at its actual presswew . the external pressure and the bubble pressure enter into the
This way of calculating the Gibbs free energy of a com-evaluation of the gas phase contribution to the total free en-
posite system that contains a subsystem with a pressure thefgy of the composite system. This is consistent with the
is different from the external pressure, was apparently Prsivork in Refs21, 24, 26, and27.
used about 70 years ago by FrenKeLater, Abraham wrote N;, Rg,P is the total number of molecules of typen
out the method systematjcally, and galled the resultant comthe soft material in the Pnal state, aqdn , x;; Rg are the
putational prescription a Opostulatié@ postulate 3of Ref.  mole fractions ofj in the initial supersaturated state, and in
24, for which the ultimate justiPcation was to be amy the soft medium in the composite state, respectively.
posteriori success it may have in applicatio?ﬁ‘sHere, as in The last expression in Eq.l7 for the number of
Ref. 2, we assume this postulate to be correct. We will PndoubblesNg, was obtained by combining the condition for
support for it both in this workbelow, and in the relatively mass balance fd, with the ideal gas law. Additional details
recent work on nucleation theory by Debened@ttf and by  are provided in Ref2, where its two-component generaliza-
Tester and Modeff>*” who use the equivalent of this method tion for a nonelastic liquid medium was derived.

in related problems. The result is Combining the components of EdL7 and simplifying
AG Rg,P =Gy, Rg,P * G, xin ,P, gives
, AG Rg,P /NKT=Ngl47Rg%y
Gin X in ,P = NJ/.,L” Xj in ,P s e 4/3 ’7TR33PIn PB/P J/NkT
= +6V, %, ag* @, 2 1+ 12 INKT
Giin Re:P = GeiasRe,P + Gourt Re,P + Gy Rg,P . .
+ X inlnx;; Rg /X in . 18
+Gy Rg, P, j=1 ’
GelasRe:P =6Vy'ep age @ 2 1 17, AgRs,P  AG Rg,P /Ng,
Gsurf R81P = 47Tr27NB R81P ) Ag RB,P /kT:|_6 VZO/NB €y ap® Ay 2 1 V2
2 +47Rg%ys 43 wRg*P In Pg/P JKT
G Rg,P = Nj Re,P %, Rg ,P, 2
=1 + N/NB X]' in In Xj’| RB /XJ in
j=1
Gy Re,P =N, R,P 1154 Re,P |, 19
Ny g Re,P = 4m/3 Rg*PeNg R, P /KT, In these equations, Eql4 is to be used foPg, v, a;, and
a,, the expression foNg in Eq. 17, together with Eq.14
M2g Re,P =g Rg,Pg +KTIn P/Pg for Pg, is to be used for the number of bubbles, Bt was
used for the elastic free energy term in E4.8, and
Ng Rg, P =NKT X, in /x; in N =N;+N, is the total number of molecules in the system.

AG Rg,P is the conditional, relative, correctedsibbs
free energy for the entire compound systemNofolecules
In Eq. 17, Pg Pg Rg,P, a dependent variable, is the andNg bubbles, at external pressupe given an equilibrium
bubble pressure given by Eql4, G, xin ,P and bubble radiusRs. The global minimum over all possible

© X Rg /%y Rg | 43 7RPg . 17
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AG Rg,P values provides the most stable state possible forAGlNsz-t"e‘5 - : ' ; =
the system. Given sufbcient time, the system will end up in 2065 |\ -
this state. . &=.02

On the other handAg Rg,P is the conditional, rela- s i
tive, corrected Gibbs free energy of the compound system 10e5 - AGTKT=0
per bubble, at external pressuRe given an equilibrium sous

bubble radiusRg. This function will be used to estimate the
radii of small metastable inert gas bubbles in elastic media. 00
In the derivation of Eqs.18 and 19, the equality of

. . - ) 5.0e-6
chemical potentialsvhich ensures zero net Rux of, Mito or
out of the bubbles>?2** 1005 4
X,  Ra P = Ra. P, 155 . : : : :
M) %21 R8 Hag "8 "8 0 5 10 15 20 2 30
written as Ry
M2) X2 Rg ,P = M2g Re,P + KTIn Pe/P, FIG. 1. Reduced relative system Gibbs free energy as determined from Eq.

was used to obtain the chemical potential difference of the'®: 3 @ function of the reduced bubble radiy” Re/Ri, , and the
. reduced shear resistances” =¢,/P . All the other parameters and condi-
solute in the two phases &

tions are given in Sec. Il A. The curves beginR{ =1, and end aRy"
Au, Rg,P M2g Re,P ¢ up Xy Rg ,P =Reniu/ Rerit)- See Tabld for the values of the critical radii.

=« kTIn PP .
Ryt ©  2y/ Pipe P+ 4g,/3 . 20’

The termAu, Rg,P arises when the components of Eg.
17 are combined.This is the origin of the InPg/P terms

in Egs. 18 and 19, which correct the free energy expres- ¢
sions for the difference between the bubble pres&grand

the external pressure i.e., it is the Frenkel/Abraham cor- ll. RESULTS

rection to these free energy function¥his term lowers the Our results are given graphically in Figsb7, supple-

free energy foPg> P, and raises it foPg<P. In the latter  mented by Tablé. In Ref.34, we provide error estimates for
case, wherPz— 0 andP> 0, this term raises the free energy the calculated free energies and bubble pressures.
boundlessly so that the likelihood of observing such states

becomes negligible. Thus, it is solely through this correctiona. parameter choices

term, that negative bubble pressures are thermodynamically

precluded. Since negative pressures can arise from the GyL 1 1€ values that were used for the bxed parameters and
equation, but cannot be sustained in a gas phase, we take thi¢ conditions were: initial supersaturation raiig,/P=3,
result as goosteriori support for the validity of Abraham®s €Xtérnal applied pressureP=1 atm, temperature T
postulate 3. As indicated previously, relatively recent work =298-15 K, HenryOs law  constak;=8.5381x 10* atm,

P ; 0_ 3
on nucleation theoﬁ?BZ7 further supports its validity. |n|t|alv ~ soft material  volume  V;’=10°u )\2.
LamZOs first paramete2 x 10* atm, the surface tension

at the soft material/gas bubble interface=70 dyn’cm

Equation 20' follows from Eq. 20 since we will have
,<10%.

E. Critical bubble radii

The range of possible bubble radii is bounded from be-
low and above, by the lower and upper critical bubble radii,

SURFACE
ELASTIC
PRESSURE

Reritt @andRyi; o, respectively. These are the radii of the small- Loee st
est and largest possible bubbles that can exist, given the Sy«Ac/NkT TOTAL(e=02)
tem, and the requirements that the bubbles are mechanicall ol T |
stable, and satisfy both mass balance and equality of chemi 5006 4 // .
cal potentials. They are determined by setthfig=1 in the f -
expression folNg in Eq. 17, and numerically bnding the oo |
two real positive roots of the resulting equation. Additional \/,’/
details are given in Sec. Il B. E

Both critical radii are system-size-dependent, but for the \\
systems and the range &50s considered hef,q, can be -1.0e-5 Moy
estimated conveniently, without iteration, and to about 1 part i
in 10* by using the closed-form inPnite-systeRg;; © in 1565 — e
its place an approximatiomR;; = is obtained by inverting 0 s 10 " ® » %
Eq. 2, and taking the limitv— 0. It is given by Re

Rcrit,l © =2y Ppe Pl+a, + 4ey/3 20 FIG. 2. Components of the reduced relative system Gibbs free energy for

e*=.02, as determined from the individual terms on the right-hand side of
or Eq. 18. All the other parameters and conditions are given in Sec. Il A.
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) 800 - é %::?o AT
ok 16+10 ﬁ%W/////;;%////
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FIG. 3. Number gas of bubbles as determined from Edg., for a range of
values of the reduced bubble radRg’, and the reduced shear modults
See Sec. Il A for the other parameters and conditions, and Bé&br the
equations that conneat, K,, ande,. Ry» 2

. . . FIG. 5. Reduced relative Gibbs free energy per bubble as determined from

0.7Qu atm. Th~e Ky value is approximately representative Eqg. 19, expressed as@Age Ry« &* surface. Each of the contour lines on
of the HenryOs law constant for, Nn water at T the surface represents a bxed valuesof All the other parameters and
=298.15 K, the value ofy is close to that for the surface conditions are given in Sec. Il A.
tension of water at this temperature, and the valuaois
roughly representative of LamZOs Prst parameter for ordinaoyher parameters and conditionshe effect of shear resis-
liquids. The initial mole fraction of Min the one-phase su- tance on the free energy functions is comparable to the effect
persaturated medium was in =3.514x 10°°, and the con-  of surface tension, for a waterlikgof 70 dyrycm. This was
stant total number of moles of both components; +n, the main factor inBuencing the range selected:foiSecond,
=5.5508< 10®% mol. The molecular weight of water though very few measurements ef exist, its values for
18.016 gmol was used for that of the soft elastic medium. some soft elastic materials have been found to be in the

The calculations were done to elucidate the role of theeange 1D10 atn?™®’ However, as shown in ReB4, the
shear modulug, on the size and stability of gas bubbles to uncertainty in the calculated value gAg rises sharply with
be expected in elastic media, and so it alone was variedncreasinge,. Since the functiorBAg is central to this work,
while all the other independent parametexs, y,K, , and  we did not want to risk making a signibcant error in it. So as
conditions T,P,P;, , were kept Pxed at their respective se-a compromise between the desire for generality on the one
lected valuese, was varied from zero to an upper limit of hand, and caution on the other, our calculations were re-
0.04 atm. This limit arose from several considerations. Pri-
marily, it was determined from trial calculations, in which it~ 1e+2

was found that foe,=0.02 atm and the above values of the pag o d .
e€= .
test1 ] — — & o
£"=.02 i _.
4.0e-5 . . . T R 2
X, OF £=04 S e
Pe/Ky 3565 - 18310 R ]
e
P
3.0e-5 o \

25e-5

2.0e-5 \
1e+7 T

1.5e-5

1.0e-5 : : : .
FIG. 6. Selected cuts through the surface in Fgusing a log-log scale.

Ry The terminal points shown on the left and right are at the lower and upper

critical radii, respectively, for the corresponding plot. The values of these

FIG. 4. Variation of the mole fraction of dissolved,Nn the medium  critical radii, and corresponding critic#lAg values, are entered in Table
=Pg/Ky for a range of values of the reduced bubble radius and reduced’he Ry, terminal points fore*=0, .01, and .02, which here cannot be
shear resistances. All the other parameters and conditions are given shown becaus@Ag< 0, are given in Tablé. All the other parameters and
Sec. Il A. conditions are given in Sec. Il A.
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1810 dition for N, which is contained in, and is equivalent to, the
pAg - E‘EESFQSE expression for the number of bubbldg given by Eq. 17 .
———— PRESSURE The set of primary unknowns to be determined depends
a4 | e on the calculation being done. When the critical radii are
, TOTAL(s=02) being determinedNz=1 by debnition, and the primary un-
KE.// knowns were taken asfig, X, ¢, Pg . When the free energies
0 = B 1 are being determinedy is known, having been set to any
\\ desired value greater thadR.;; |, and the primary unknowns
-3 were taken asNg, Xy, Pg -
Be+9 - X 1 The computational scheme described below was used for
\ all the reported results. It is efpcient, and never fails to pro-
\ vide a correct solution to any desired degree of accuracy.
-1e+10 \ T
1 10
Ry 1. Determination of R , (the lower critical
radius)
FIG. 7. Components gBAg for e*=.02, as determined from the individual . o .
terms on the right-hand side of E4.9 . All the other parameters and con- A value for Ry is needed initially. One either accepts
ditions are given in Sec. IIl A. an approximate value using EBO or 20’ , or improves on

these values by taking into account the systemOs Pnite size.

stricted to the range O atme,<.04 atm. As shown in Ref. e brieBy indicate below how an accurate valueRgf, is

34, the uncertainty in the calculate@Ag values was prob- determined, based on the systemOs Pnite siZ(_a.
ably less than 1%, and almost certainly less than 2%, pro- V& seek a value oRg that satisPes’+ Ps=0 for Ng
vided s,=.04 atm. =1. HerePy is the HenryOs law-based pressure after forma-

We assume that HenryOs law constiqt, LamZOs prst ton of the smaller critical bubble=Kyxy Reriry  Pg is the
parameter\, , and the surface tensiony are the same for Mechanically stable bubble pressure given by B4. with

all the model materials, that the solute concentration in thé\lel' Any_convenient root-Pnding scheme can be used.

soft medium is sufpciently low so that HenryOs law applies(,m?’ise‘:tior‘?éW"JlS used here, both because it is convenient,

and that the solute does not inBuence the characteristic p#nd because, while some other root-Pnding methods are
rameters \,,e,,7 of the soft material. Since the dissolved faSter, Bisection never fails when properly implemented.
solute mole fraction,,; Rg will be 10, last approxima- Starting Iovyer and upper brackets for the root are needed.
tion should be essentially exact. For the Pnite systerR.,, these were _taken asy2 Py,c P
+ 4e,/3  and 2y/ Pj,e P, respectively, though other
brackets are possible. For each trial valueRgf;, which is
prescribed by the Bisection routine, the corresponding trial
values of botha, and v are needed. There are at least two
The calculations are done by using three independenwvays of getting their values. One way is simply to iterate
equations to numerically solve for three designated primarghem to convergence, using their respective expressions
unknowns. The values of the other dependent unknowngiven in Eqg. 14, and settingNg=1. Because it will turn out
here v,a,,Ry,Rs , follow from their relations to the primary thata, is small a,=0 +10° , a small number of iterations
unknowns. The latter relations are given by Egé, 5, three to Pve starting witha,=0, are sufpcient. Another
14, and 17 . The independent equations are those that enway is to equate the right-hand sides of the expressioajfor
sure mechanical stability of the bubbles. the expression in Egs. 14 and 21, and to then solve the resulting qua-
for Pg given in Eqg. 14 , equality of chemical potential®r  dratic equation fow, taking the physically relevant roothe
equivalently,Py Py, =KXz , which ensures zero net Bux root between 0 and 1
of N, into or out of the bubbles, and the mass balance con- ay= Ce v C+V,0 /30V,0,

B. Calculations

TABLE 1. Th(_e‘reduced relativ“e Gibbs free energy per bubble at the Iowe_r C= 4mw/3 NBRB3; a;=+1/3. 21
and upper critical bubble radii for the shear modulus values considered in
this work. The critical radii were obtained as described in the ®8&ts. IlE  Equation 21 is obtained by inverting the equation forin
and Il B . The values forBAg were determined from Eq19 . The under- Eq. 14. Both routes provide the identical trial values of
lying parameters and conditions are given in Sec. Ill A these functions at the tridk.;,. From these functions, the
. expression foPg in Eq. 14, Ng=1, and the ideal gas law,
atm R i BAgX 1012 Rt 4 BAgX 1012 the number of moles of gas in the critical bubble is obtained.
From this and mass balance, one obtains the mole fraction of

4 L] . . B
801 %;%2% %‘iﬁ 1o 191'81 0'322‘2 5 dissolved gas at this trieR.,, and subsequentl¥y, and
0'02 0'6909 0'328 19'2 0'0976 Pye Pg. The cycle over the improvinB values is contin-
0.03 06864  0.492 193 +0.0662 ued until the desired degree of accuracy is obtained. While

0.04 06819  0.657 194 +0.230 the Reity values we used were obtaineq in this way, they
differ from Ry @ by only about 1 part in 10
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2. Determination of the free energies, the number simple liquids, i.e., for both, the largest possible single
of bubbles, and the bubble pressure bubble state, which occurs at the upper critical radys,,,
Once R, is determined, the evaluation d?; Rz, IS the most stable state possible for the system. These termi-

AG Rg , and Ag Ry , using Egs. 14, 18, and 19, for nal points alR;; , have been studied experimentally for a N
Rg> R, can be completed. This calculation is carried outbubble in water® For this system our equations, wher ap
somewhat differently from that fdR;,, because in the latter Plied in the 82—>0 limit, correctly predicted the observed
calculationNg was known =1 andRg was unknown, and  Reritu values’*®

now Rg is known it is set equal to any value greater than ~ The contributions of the components AIG/NKT are
Ruit; » andNg is unknown. In this calculation, for each se- shown for thes,=.02 atm plot in Fig2 from which it is seen
lected value oRg> Ry, we again use a numerical routine that the shape of thAG/NKT curves is determined by the
Bisection to determine the solute mole fraction in the surface tension, pressure correction, and composition contri-
mediumx,; Rg , at the selectedRz. Convenient upper and butions, while the elastic term, which is almost constant,
lower brackets fox,, Rg , valid for all radii, arex, in and  simply shifts the curves upward by an almost constant
zero, respectively. Given a value Bf and a trial value of amount. From Egs.16' and 16", respectively, the upward
X, Rg which is prescribed by the Bisection routine, the cor-shift is given to a good approximation b32/3 V0%, 1
responding trial value oPy Rg is determined from HenryOs * v /NKT or a little less accurately by2/3 V,%,/NKT. The
law Py Rg =KyXo; Rg , and the corresponding trial value last expression follows because here<.03. Also, for a

of Ng Rg is determined from its expression in Eq7 , with  givene,, v in all these systems increases monotonically with
P, Ry used for the bubble pressure. As with the calculationRs. For example, foe,=.04 atm,v increased monotonically
for Ryit;, the corresponding trial values af and v can be ~ from  1.3X 10° at Ryt 0 3X 102 at Rerit,u-

determined either by iterating these variables to convergence, In Fig. 3, we show plots of the numbers of bubbldg

or by eliminatinga, between Egs.14 and 21, and solving for 0<g,=<0.04, that satisfy the equilibrium requirements
the resulting quadratic equation fer Thus, at each selected and mass balance, as a function of bubble rajysand Fig.
value of Rg, and trial value forx,; Rg, trial values for 4 is used to physically account for the plots in F8.Since

Py =KpXoy Rg , Pg from Eq. 14 , and consequentlf,,  the total number of moleculeN is Pxed, the number of

* Pg, are determined. As with the;;, calculation, the cycle bubbles is proportional to the bubble number density
of calculations over the progressively improving values of Ng/N . The steep rise ilNg shown in Fig.3, just beyond the
Xp; Rg is continued until the desired accuracy is reachedlower critical radii, can be understood from a combination of
The Pnal values of the variables;) Rz , Xo) Rg, Ng Rg,  mass balance, equality of chemical potentials, and mechani-
Ps Rs,a Rg,andv Ry, are used in Eqs18 and 19 to  cal effects. Specibcally, the initial rapid fall in the bubble
determine these free energy functions at the selected value pfessurePg with Rg in this region, which is shown in Figt,

Rs. is mechanically based. It is due to the rapidly falling surface
tension term 2/Rg in Eq. 14. Becausexy; Rg must re-
3. Determination of R , (the upper critical radius) main proportional taPg for the equality of chemical poten-

tials to be maintained or equivalentlys,; Rg =Pg/Ky ,
Yhere must also be a correspondingly rapid and proportional
fall in the dissolved solute mole fractiog, Rg in this re-
gion. This is also shown in Figd. Because mass balance
must be satisbed at all points, a rapid dropdnRg means
that the amount of MNtransferred to the gas phase must rise
rapidly in this region. Since the bubbles in this region are
small, this can occur only by a rapid increase in the numbers
of bubbles.

The variation ofAG with Rg is illustrated in Fig.1, from The relative ordering of the curves in Fig. follows
which it is seen that fog, .025 atm or greateAG>0 for ~ from this as well. Since increasing the shear modulus re-
all Rg values. Therefore under these conditions the one-phastces the bubble pressure at a given radisse Fig4 , the
homogeneous state is more stable in the long-time thermanitial rise in the numbers of bubbles must be more pro-
dynamic limit, than any bubble-containing compound statenounced, the greater the shear modulus. The faNgrwith
that can form. Physically, this occurs because for Rg atlargeRg can be understood from the combined effects

.025 atm or greater, the combined positive surface an@f the cubic increase in the bubble volume wiRg, and the
shear resistance free energy terms outweigh the negativgowed rate of the fall irPg andx,, Rg with increasingRg
pressure correction and composition terms at all possible rat largeRg see Fig.4 . The combination of these smais
dii see Eg. 18 . On the other hand, fog, .025 atm or and largeRy effects accounts for the asymmetry of tNg
smaller, one can expect thermodynamically stable compositeersusRg plots in Fig. 3.
bubble states to form, given sufbcient time. For these sys- BAg B 1/KT, wherek is BoltzmannOs constanwhich
tems, the right-most terminal point of each of the plots inis obtained from Eq.19, is shown in Figs587, in the form
Fig. 1 is the global minimum of the corresponding plot and isof a BAge &* RB* surface, constant* cuts through this
the most stable state that can exist. In this respect, soft elastsurface, and the component contributions to one of these
materials from which stable bubbles can form behave likecuts, respectively. Before considering the details, it is worth

The above calculation is repeated, using progressivel
larger values oRg, until the value ofNg Rz falls below 1.
The upper critical radiuB , is then determined by numeri-
cally interpolating to that value d®s in the largeRg regime,
for which Ng Rg =1.

C. Values of free energies of bubble formation
and bubble densities
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pointing out in a general way whyAg takes the form it have a half-life that exceeds what it would be in a nonelastic
does. It is obtained fronBAG Rg /Ng Rg , where the nu- material wherein stabilizing meta-stable wells do not form. A
merator varies only moderately over the rang&gfFig. 1 , bubble represented by this plot will grow, given sufpbcient
while the denominator spans some three orders of magniime, because of the combined effects of Buctuations and the
tude, peaking sharply and asymmetrically at snigll Fig.  tendency of the system to reach its global minimum free
3. Therefore, aSQB* increases beyond unity, and the num- energyg.9 The driving force for bubble growth here is reduc
bers of bubbles rises to maximum and then falls, the fredion of the supersaturation in the medium, and the resultant
energy per bubble, must fall to a minimum, and then risereduction in the system free energy. This occurs by a reduc-
Consequentl\3Ag is expected to go through a nonparabolic tion the chemical potential of Nin both phases of the sys-
minimum at smalRg values that corresponds approximately tem as the bubble grows.However, a bubble at or near the
to the value ofRg at whichNg peaks. bottom of the wellatRg  1u , will be delayed from leaving
The surface in Figs shows the wells as a valley that the well, because of the free energyr reversible work
runs along the base of the steep inner wall. The valley Roorequired to leave. Growth tB.;;,, cannot occur without the
rises slowly ag* increases, and the inner wall remains steepbubble Prst acquiring the free energy needed to rise from
at all *>0. The outer wall gradually gets higher and ex- BAg min to BAg max. BAg® B Ag maxe Ag min en-
tends to greater distances with increasirig Whene* in-  ters as a negative exponentialkp e BAg* in the TST ex-
creases beyond about.025, the outer wall no longer turngression for the rate constant for going over a baffigr?®
down, but terminates at B, value for whichBAg>0. A single large step or a series of concerted smaller steps
It is seen from Fig6 that fore* >0, the minima in these would be needed for the bubble to get to the barrier top. A
free energy wells all occur slightly beyorR;. The wells ~ OstepO here refers to a set of coupled Ructuations. Since these
shown are of two types: those at the lowet values in  are relatively rarelarge Ructuations in systems with large
which the well leads to a barrier and subsequently a stablaumbers of particles are rdfé”, the bubble®s growth will
bubble, and those at the highet values that involve a well be delayed.
only. For the latter, the most stable state possible is the initial Conversely, a bubble represented by the dashed plots in
one-phase homogeneous state. A bubble in either type &fig. 6 &*=.03 ore*=.04 will, given sufpcient time, shrink
well will be both mechanically stable and thermodynami-to its lower critical bubble radius, with an increase both in
cally metastablebecauseAG>0, so that in either case a the bubble pressure and the chemical potentials in the
bubble in the well can be expected to have a degree of lorphases, and ultimately dissolve. This is because for these
gevity. systems the initial dissolved state, for whidls=0, is the
The free energy plot in Figé for &,"=.02 is decon- most stable system state possible. The degree of supersatu-
structed into its contributing components in Fig.lt is seen  ration is in these systemgnsufbcient to overcome the com-
from this bgure that the steep inner wall of the well is duebined surface and elastic free energy requirements. However,
entirely to the elastic contribution t8Ag, while the outer as with a small metastable bubble which ultimately grows to
wall has contributions both from the elastic and surface tena larger stable bubble, here too there will be a delay in get-
sion terms. The elastic contribution {®Ag, given by the ting to the minimum global free energy state, because of the
blue curve in Fig.7, is given by the pbrst term on the right- inner wall to be climbed in shrinking to the lower critical
hand side of Eq.19 . The behavior of this term is governed radius. The inner wall is due entirely to the local elastic free
by the harsh variation dflg in this region see Fig.3 . OThe energy. As indicated previously, the volume of the medium
physicsO is that the maximumNig causes a minimum in the that a bubble acts upon, and therefore the local elastic free
undistorted volume of elastic material associated with theenergy, is a minimum in the vicinity of thidg maximum, or
bubble V,°/Ng , which results in a minimum in the local the SAg minimum.
elastic free energysee Eq.15 . For RB* 10 the contribu- In principle, the curvaturesecond derivativeof SAg in
tions from the pressure correction and composition termshe vicinity of the minimum can be used to provide informa-
which are negative, begin to outweigh the positive surfacaion on the frequency with which the metastable bubble os-
and elastic terms, causingAg to turn negative. The full cillates between smaller and larger radii while residing in the
BAg curve shown in red, terminates at the thermodynami- well.!® It is also noteworthy that, in the region of the well
cally stable bubble radiusRyj, 19.2u, for which  minima, the bubble number densitiNg/N is some three
BAg 9.8 X 10 see Tabld . orders of magnitude greater than in any stable composite
The meaning and physical signiPcance of thgkey  state, where it is1/N see Fig.3 . Consequently, fairly
plots are central to this work. Depending on whether it islarge numbers of small bubbles with some degree of longev-
positive or negativeAg represents the free energy cost ority would be expected to form in a soft elastic materials with
gain per bubble, respectively, to create a composite state ofiese characteristics.
Ng Rg bubbles from the initial supersaturated state. Equiva-  This behavior differs signibcantly from what is found for
lently, Ag also represents the reversible work associated witlyaseous dissolution from simple liquids, which is illustrated
the creation of one gas bubble of radiBg from the initial by the solid black curve in Fig6. This curve has no well,
supersaturated state. The bubble is one oNf & bubbles  because it has no inner wall, the existence of which requires
in the composite state. the material to have a nonzero shear modukee Fig.7 .
For debniteness, consider brst #fe=.02 plot shown in  This curve shows that a critical bubble with radiRg;,
red in Fig.6. A bubble in the well shown in this plot will once formed from gas-like embryonic precursors, can do
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only one of two things: 1 it may acquire sufpcient free phase and inside the bubble, respectively. The idea was, that
energy to get over the barrier and form a stable bubbje  because of polar head-group mutual repulsions, the adsorbed
one large step, or by a series of smaller concerted staps surfactant would reduce the effect of surface tension term in
2 it may dissolve as a consequence of a negative volumehe YL equation, thereby reducing the pressure by which the
Ructuation. Here, because there is no elastic free energy banedium acts on the bubble. Yount and co-worf&fe and

rier to slow it down, dissolving would be rapid. Therefore alater Weinké®>* used this basic idea, and variants ofit>>*
critical bubble formed in a simple liquid would be expectedto develop models for predicting ostensibly improvee.,

to have a short half-life, relative to one formed in an elasticsafer decompression protocols relative to those previously
medium with a positive shear modulus. available. An underlying assumption in these applications is
that the surfactant-stabilized bubbles exist as long-lived gas-
eous seeds, which can expand during rapid decompressions,
possibly leading to the development of DEE!

Our results may be relevant to the solution of a decades- Problems arose with the Yount/Weinke theory. First,
old puzzle in the beld of DCS: the apparent existence olann pointed out that, in the thirty-odd years since the idea
long-lived, small, inert gas bubbles in some tissues of thavas proposed, not one specibc surfactant that exists in any

body. Here, we outline the puzzle, we review an earlier idedissues of the body, and that acts in this way, has been
for its solution, and we compare our work with the earlieridentiped: Second, Gaskinst al> carried out a series of

work. experiments to determine the inBuence of known surfactants
A signibcant body of evidence suggests that, in many ifon the extent of bubble formation subsequent to the decom-
not all instances, DCS arises from the growth of pre-existing?ression of water-gelatin solutions containing dissolved N
gas bubbles in tissues of the body, following overly rapidThese workers found known surfactants to effect
decompressioi**® An alternative possibilityfle nuovo —decompression-induced bubble formation in a direction op-
bubble formation by homogeneous gas bubbleposite to what is predicted by this surfactant-based theory.
nucleationNis not believed to be a signibPcant causal mechaSpeciPcally, as the surfactant concentration was increased,
nism in DCS because of the very large activation energieﬁ‘le increase in extent of bubble formation subsequent to de-
involved?*! Put another way, very large supersaturation lev compression that surfactant theory would have predicted was
els, well beyond what is usually sufbcient to cause DCSpot found. Instead, a reduction in bubble formation was
would be needed for homogeneous gas bubble nucleation found. Notwithstanding these serious concerns, the theory,
occur at a signipcant raté®*! If, however, DCS can result the models, and decompression protocols based on them con-
from the growth of pre-existing gas bubbles, these pretinued unabated.
existing bubbles must have been sufbciently stable to have A more basic problem with the surfactant theory and its
had non-negligible half-lives. It is here that tipgece-de- variant§*®! is the underlying tacit assumption that mechani
résistancearises. Assuming air is the gas being breathedgal stability somehow ensured the existence of long-lived,
these bubbles will consist mostly of,Ndince most of the @  small, gaseous bubbles in condensed media. This assumption
will have been consumed by metaboliéthTherefore, for a  has no scientibc basis whatsoever. Mechanical stability is a
person equilibrated at 1 atm, the, Martial pressure in a necessary but insufpcient condition for long-term stability. It
bubble will, in the absence of surface tension effects, bés certainly true, that in the absence of mechanical stability,
approximately 0.75 atm. This value derives from the requirebubbles cannot exist for any appreciable length of time. But
ment that the chemical potentials of, ih a stable bubble in order for a bubble to be sufbciently long-lived for it to act
and in the circulatory system be equaecause of traces of as a nucleation seed for bubble growth in some future de-
other gases, the total pressure in the bubble will be slighthicompression, it must be both mechanically stable and ther-
higher than this, approximately 0.77 affft** However, on  modynamically stable or metastable. Thermodynamic stabil-
the basis of the YL equation, such a bubble simply could noity and/or metastability of gaseous bubbles in condensed
exist because the mechanical pressure acting onPit media were not considered in this pre-existing work.
+2vy/Rg would, in the absence of surface tension effects, be  The work in this paper provides a new and more viable
1 atm, i.e., signibcantly greater than 0.77 atm. How to recfesolution to the puzzle. The difpculty of simultaneously sat-
oncile the requirements of mechanical stability and equalityisfying mechanical stability and equality of chemical poten-
of chemical potentials in a way that would allow for the tials can be resolved by using a soft elastic material with a
existence of small long-lived gas bubbles is the puzzle. = non-zero shear modulus, rather than a simple liquid with a
There is a pre-existing body of work, published in the surface tension, as a model for tissues of the body. In so
applied literature, wherein it was attempted to resolve thigloing, the relevant pressure equation becomes the GYL
dilemma. The suggestion that received the most attentiorquation, not the YL equation. The salient difference lies in
was put forward by Yount and co-workel&* These work  the second term in Eqgs2 and 3, which is negative. This
ers suggested that surfactant molecules may exist in the bodgrm lowers the total pressure acting on the bubble, relative
which, by adsorbing to the bubble/condensed phase inteto the YL-predicted pressure. As shown in Refand can be
face, form a protective skin around the gas bubble, therebyeadily veribed by Eqs2 or 3, provided the gas bubble is
preventing its collapse. The hydrophyllic polar head-group 1w in radius, the surface tension is10D 70 dyncm, and
and the hydrophobic hydrocarbon tail of the putative surfacthe shear modulus is 1 atm, the pressure of the medium
tant were pictured as being, in the aqueous-like condenseatting on the bubble surface can readily be 0.77 atm, when

IV. DISCUSSION
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the external pressure is 1 atm. Consequently, it is possibleis- Go:gmanJ- CEem- ';hysl3l 184502 2009.

; ; S. GoldmanJ. Phys. Chem. BL12, 16701 2008.
for SUCI’.I a bubble tp SImUItaneOUSIY be meCh?'nlca”y St&."bleSR. D. Vann, inBove and Davis’ Diving Medicine&nd ed., edited by A. A.
and satisfy the reqU|r?ment (?f equality of chemical potentials ggye and J. C. DavisSaunders, Philadelphia, PA, 199Chap. 4.
of N,. Moreover, variations in the values of the parameters *R. D. vann, inBove and Davis’ Diving Medicinetth ed., edited by A. A.
that characterize the medium, particularly the shear modulus_Bove Saunders, Philadelphia, PA, 200€haps. 4 and 7.
and the surface tension, will create a range of possible prop- M. B. Strauss, S. S._Mlller, A. J. Lewis, J. E. Bozanic, and I. V. Aksenov,

. .. . . . . Undersea Hyperbaric Med5, 241 2008.

erties and bubble radii, all of which are consistent with main- sg A "Hils, Decompression Sicknesdiiley, New York, 1977, Vol. 1,
taining a pressure on the bubble of about 0.77 atm when the chaps. 2 and 3.
external pressure is 1 atm. In other words, our results are;B- A. Hills and B. P. James, Undersea Biomed. R&s185 1982.

; ; Al ; M. P. Spencer, J. Appl. Physio#i0, 229 1976.
consistent with the possibility that bubbles with some degrees "y i "0 5l hakk, O, . Eftedal, iBennett and Elliotts Physi

Of longevity exist in a variety of tiSSU_eS of the body, so that ology and Medicine of Divingsth ed., edited by A. O. Brubakk and T. S.
different forms of DCS may potentially arise when these Neuman Saunders, Edinburgh, 209Xhap. 10.3.

bubbles expand. E. A. GuggenheimThermodynamics: An Advanced Treatment for Chem
The expressions derived here and in Refshow that ists and PhysicistdNorth-Holland Physics, Amsterdam, The Netherlands,
1967, Chap. 1.

small, inert gas bubbles, embedded in soft elastic mate”alle. D. Landua and E. M. LifshitsTheory of Elasticity Pergamon, Oxford,
that have a nonzero shear modulus, can be both mechanically1959, Chap. 1.

stable and thermodynamically metastable. There is no need!- S. Sokolnikoff, Mathematical Theory of Elasticity2nd ed. Krieger,
to invoke elusive and nonspecibc stabilizing agents that pu-,Ma/abar. FL, 1983 . .

. . . The modulus of hydrostatic compressiaor the modulus of compres
tatively form protective skins around bubbles, or other nebu-  jo, k. the modulus of rigidity or the shear modulus:, Young®s modu-
lous concepts. Rather, it is here suggested that tissue elastic-us E, and PoissonOs ratjo are related as followsRefs. 11 and 12 :E
ity, which is UbiQUitOUS, may be the physica] basis for the =2e¢ 1+y =3K 1+2y . PoissonOs ratio is dePned as the ratio of trans-
existence of small inert gas bubbles with non-negligible half- verse compression to longitudinal extension and is one of a number of
. . . . measures of stiffness or rigidity for an isotropic matertaénde are also
lives in some tissues of the bOdy- If such bubbles exist, they measures of stiffness of an isotropic material, &d, and\ are related
may act as nucleation seeds for bubble growth following a by K=x+ 2¢/3 which provide the dePnition of. X ands, sometimes
decompression. called LamZ0s brst and second parameters, respectively, provide the pure

We conclude with a speculative comment on why Osome €0mPression and the pure shear contributions tandK is simply the
.z . reciprocal of the familiar coefbcient of isothermal compressibility,
d_egree Of longevityO may be sufpcient to ensure an €sseN<yyherex « 1/V V/ P 1. For materials witfE=£=0, the elastic char-
tially continuous supply of small metastable bubbles in some acteristics of nonrigid Buidsthat resist compression but not sheare
tissues of the body. Consider two surfaces in adhesive con- recovered. This limit, in whichy is exactly 0.5, is also known as the
tact with one another that are immersed in a gas-saturated Oisotropic upper limit 0f.O Our interest here is in materials for which
. N . /K 10%, or equivalently,e E/3. For such materialsy is very
solution. OTribonucleationO refers to the phenomenon slightly less than 0.5.
whereby the rapid separation of these surfaces from one an“i. m. Lifshits and V. V. Slyosov,J. Phys. Chem. Solid49, 35 1961.
. . . 15 H .
other results in the formation of new gas bubbles in the M. A. Fradkin,J. Phys.: Condens. Matte, 7925 1997.
solution®*5%55 The physical explanation is that rapid sepa nge we prow‘de a slightly dlffererlt physical basis for derlv!nnglq..
ration of mutually attracting surfaces results in momentar It involves using the approximation that results from settifg Ry
. y ; 9 . y equal toa, rather than to zerou, 2y =a,=+ P/3K, for an isotropic
negative pressures in the solution where the surfaces sepa-material under hydrostatic compression, whétg=0 Ref. 1. Also,
rated. This produces some gas dissolution. Physical exerciseu, ? « =a, for an isotropic material subjected to a nonhydrostatic com-
while super-saturated WitthfOI‘ example, immediately af- pression folNg=1. In this casea, is obtained from the expression for it

ter surfacing from a scuba divés known to increase the given with Eqg. 2. Using either of these expressions, it is found for O
likelihood fg . DCS d trib leati h b <Ng=1 and for the materials of interest herthata,=0 +10*° . Since
Ikelinood o 'ncumn_g » and tribonuc eagon as 'een a, is small relative to 1, both foNg=0 andNg=1, we assume that for
suggested as a possible explanaﬁf‘)ﬁ.he body is not static, Ng>1 we will also havea, 0+10%, so thatu,? R, a,
and tissues within it may not be isolated from effects such as 0 +10** . We will restrict e, to £,= 04 atm, andP will always be
tribonucleation. Therefore, while any one meta-stable bubble éi\";‘;':-Eiui’it'tU“”g these values fof “ Ry, &, and P into Eq. 13
cannotNby debnitionNlast indebnitely, a very Iong hah_‘-hfe Eor one bubble in the systeRy andRs are identical, and the symb8,
may not be necessary for the long-term continuing existence was used for the system radius in RefIn this work, whereNg= 1, both
of small bubbles in tissues. If those small meta-stable symbols are needed to distinguish the domain and the system Rgdii,
; ; i _ andRg, respectively.
bubbles tha.t a.'re lost b.eca.use (?f their pnl.te half-life a.re re 8D, A. McQuarrie, Statistical MechanicsHarper and Row, New York,
placed periodically byin vivo tribonucleation, something 1976
akin to a steady-state may exist. According to this picture,’*p. A. McQaurrie and J. SimorPhysical Chemistry: A Molecular Ap
tribonucleation would be the source, and Pnite half-lives the g;oach University Science Books, Sausalito, California, 199Chap.
sink, for the genera’qon and_ loss, respectively, of SmaIIZOJ. W. Gibbs, Trans. Conn. Acad. Arts ScB, 343 1878; Collected
bubbles. Based on this paradigm, the long-term presence of works vol. 1, Yale University Press, New Haven, 1948

small gaseous bubbles in tissues becomes plausible. 2L, 1. Frenkel,Kinetic Theory of LiquidsDover, New York, 1955 Chap.
7, pp. 164D166.
22T, L. Hill, An Introduction To Statistical Thermodynamicaddison-

Wesley, Reading, MA, 1960Chap. 11.
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164509-13  Free energy wells for small gas bubbles

#Both Debenedetti and Tester and Mod&lefs.26 and27 below, whose
work is more recent than that in Refl or 24, use expressions that are
equivalent to those used hem@nd in Refs21 and24 , to determine the
free energy of a heterogeneows compound system wherein the pres-

J. Chem. Phys. 132, 164509 2010

seen from Eq.19, the values ofBAg are determined both bRg and
Ng Rg , which are coupled through thidg Rz equation given in Eq.
17 . A positive Buctuation in the volume of the bubbtkie, for example,
to a positive Buctuation iior 2 + R , see Eq.9 , would lower both the

sure of the inner phase differs from the external pressure. They also use bubbleOs pressure and the chemical potential of 3tie Nl This would

the same stability criterion as was used hered in Refs21 and24 , for

result in the inBux of a small amount of,Nrom the medium into the

purposes of determining the composition of the system. The external bubble. The process would stop when the pressures and chemical poten-

pressure P is used to evaluate the underlying chemical potentials in

tials rebalance, each at a lower value, relative to their respective values

both the external and the inner phases. Also, the same stability criterion before the Ructuation. Bubble growth is here coupled to an initial rise and

was used in this work, as in Refgl, 24, 26, and27. This is needed to

a subsequent fall in the total number of bubbles, which can occur by

determine the composition of the condensed phase, and the actual numberbubble bssion and fusion, respectively. As the entire process is repeated,
of molecules of solute in the bubbles. In our notatisee the equation in the bubbles grow, their numbers Prst rise and subsequently fall, but the
the text under EQ.19 it is uy) Xy Rg P =uy4 Rg,Pg . Therefore, concentration of Nin the elastic medium drops monotonically, as does
both for the stability criterion, where the actual pressures of the phases the pressure of Nin the bubblesas illustrated in Fig4 . This produces
are used, and in the chemical potential determination, where the external a monotonic drop in the chemical potentials of M the two phases
pressure is used for both phases, the equivalent thermodynamic expres- which are equal to one anothefhis drives the process and ultimately
sions were applied here, as in Re24, 24, 26, and27. However, Reiss, produces a reduction of the system free energy. When the system free
whose work on the subject was published both before and after Abra- energy is at the stationary global minimum, the Ructuations act randomly
hamOs worksee Refs28 and 30, respectively believed this stability with no net effect on the system. However, away from the global mini-
criterion was inaccurate, and provided a different one for use in these and mum, the Ructuations are not randomRthey favor the direction that re-
related problems. Its general form is given by Etf.32 of Ref. 28, and duces the full system free energy. To understand this, recall that for a
it is written out more explicitly for some speciPc examples in F3€E. system not too far from global equilibrium, the probability of a Ructua-
However, it was subsequently shown by Wilemsky that ReissO stability tion from state 1 to state 2 is given approximately by probabailty
criterion lead to inconsistenciesee Refs31 and 32, below, and De- xexpe BAG , whereAG G,* G; see Ref21 . For systems with large
benedetti concluded that ReissO stability criterion was in fac~t incorrect numbers of molecules, this will heavily favor those changes which are in
see Ref26, Appendix 2. Debenedetti traced the error in ReissO stability  the direction that ultimately lower§. Here this would most often be a
criterion to his use of an approximate equation as the starting point in his positive volume Ructuation of the bubble, coupled either to an increase or
derivation see Ref26, pp. 385 and 386 a decrease in the number of bubbles, depending on the bubble radius.
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