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Abstract. We determined the total system elastic Helmholtz free energy, under the constraints of constant
temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions
(i.e. “hard spheres”) embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied
both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary
conditions at the surface of the spheres were used to describe the rigid displacements of the spheres,
relative to their initial location(s) in the unstressed initial state. These displacements, together with the
initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer
surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain
and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic
decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic
expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically
integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a
quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or
equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary
or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved
the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than
did the stationary minima, for which the hard spheres were further away from one another.

1 Introduction

The stability of elastic systems is treated in standard texts
on elasticity theory [1–4]. The field is old, and its origins
can be traced back to Euler [1]. Due to its importance
in civil and mechanical engineering, much of the early fo-
cus has been on the bending and buckling of columns,
beams and plates [1–3]. The stability in these systems,
particularly in the earliest work (which pre-dates modern
thermodynamics), was usually analyzed on the basis of
mechanical stability, specifically, by minimization of the
elastic potential energy [1]. In that work, a system was
considered stable, when in its minimum mechanical en-
ergy configuration. Generally, relatively simple geometries
were (and are still) considered, since analytical solutions
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could be found for them (see for instance [5] for some re-
cent work on the stability of an elastic tube). For more
complex systems, numerical methods such as the Finite
Element Method, “FEM” (see [6] and references therein),
or the Boundary Element Method “BEM” (see [6] and
references therein) have been applied. Both methods in-
volve fitting functions to prescribed boundary conditions
at the system nodes (which arise from the approximate
discretization of the medium’s body (FEM), or its bound-
aries (BEM), in order to solve for the stress and strain ten-
sors in the elastic medium). The solution at an arbitrary
point in the medium is found by interpolating the values
obtained at the nodes (FEM), or by means of a Green’s
function integration (BEM) [6]. The computational cost
entailed in using FEM or BEM increases with the number
of degrees of freedom and this can render complex prob-
lems intractable, particularly when hundreds to thousands
of initial geometrical configurations need be studied (as
in this work). In particular, our problem involves a large
number of sub-systems, for each of which, the solution of
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the elastostatic equations is needed. In addition, depend-
ing on the method of integration, the stress and strain
tensors at a large number of points within the body of the
elastic solid need be evaluated, in order to numerically
integrate the elastic Helmholtz Free Energy density, over
the volume of the elastic solid (below).

As an alternative, for problems involving spheri-
cal inclusions such as spheres or spherical cavities,
Sadraie et al. [7] proposed a method based on combining
Neuber-Papkovich-like solutions, the Schwartz alternating
method, and Least-squares, for finding the spherical har-
monic expansion coefficients that arise in the expressions
for distance. We apply this method here because of its
ease of implementation and computational efficiency. We
also emphasize that here, we do not attempt to explore
which is the “best”, fastest, or most accurate method, but
rather to use one that we consider good enough to be used
as a starting point for our purposes. We are interested in
getting results for a significant number of initial configu-
rations, and are not primarily concerned with the method
to solve the elasticity equations. A key feature that bears
on the method’s efficiency, is that the number of terms
that need be retained in the truncated spherical harmonic
expansion does not depend on the number of inclusions,
but rather on how close the inclusions get to each other,
and to the boundaries of the medium (see [7,8]). Since
very close approaches of either kind are not particularly
important here, this limitation is essentially irrelevant to
the present work. A body of work on thermodynamic sta-
bility in elastic systems has been developed over the last
half century [9–11], and an excellent, comprehensive, rel-
atively recent treatment, that is available on the internet,
was provided by Morris [12].

The purpose of this work is to learn about how shear
resistance in a soft elastic solid influences the thermody-
namic stability of different shapes that the elastic solid
can assume. Our basic motivation stems from our interest
in the effect of shear resistance in soft biological tissues
(such as kidney tissue), on the preferred state of aggre-
gation of small stones embedded in the tissue. This bears
on the problem of the physical basis of solid inclusion ag-
glomeration, which is relevant to whether small stones are
induced by elastic forces in their surrounding medium to
cluster together to form larger stones. This is obviously
important to kidney stone growth. While small inclusions
are generally believed to not be problematic, large stones,
because of the serious kidney damage and extreme pain
they can induce are a major problem in urology [13–15].

The relative contributions of the various mechanisms
by which kidney stones grow from a super-saturated solu-
tion of calcium salts (mainly calcium oxalate), into large
stones are not completely clear. However, there is evi-
dence that kidney stone growth is a multi-step process
wherein nucleation and crystal growth (by precipitation
of dissolved solutes on to existing nuclei) occur initially.
This is believed to be followed by crystal aggregation, and
crystal retention [14–16]. While the first two mechanisms
are expected to be driven by the degree of super-saturation
of the urine with respect to the dissolved salts (which is

why kidney stone patients are encouraged to drink lots
of water), the aggregation process is more complex and
more difficult to study experimentally. Our results will be
suggestive of a theoretical basis for crystal coalescence.
Specifically, we will find hard particle coalescence to be
thermodynamically favoured by elastic shear forces typical
of those in soft biological tissues. This is consistent with
the observed structure patterns found in kidney stones
(see for instance [16]).

Furthermore, there is also a need for a comprehensive
theory of thermodynamics of soft solid materials that con-
tain hard embedded inclusions within them. While some
preliminary approximate expressions have been derived
for the Gibbs Free energy of elastic media containing gas
bubbles (in relation to another interest of ours - Decom-
pression Sickness (see [17] and references therein)), the
present article, by dealing with a physically simpler type
of inclusion (hard immutable spheres) can be more rigor-
ous. As indicated above, we are interested here in whether
the shear resistance manifested by an elastic solid acts to
separate or to coalesce embedded small hard spheres. Gas
bubbles, because they are highly compressible and dis-
tortable, present a more complex problem than the one
addressed here, and we hope to revisit the more complex
gas bubble problem in the future.

Therefore we will focus on finding those geometric con-
figurations of the inclusions (or equivalently, those shapes
of the medium) for which the total elastic Helmholtz free
energy (HFE) is a minimum. The system will be comprised
of a spherically shaped soft elastic solid, with one or more
hard spherical inclusions embedded in it. We construct our
system by first considering this soft spherical elastic solid,
in its initially unstressed and unstrained state. We remove
small spheres of this unstressed and unstrained material,
and replace the resulting voids with hard spheres, which,
by definition, can neither be compressed nor distorted. We
will apply Dirichlet boundary conditions to this system as
follows. The boundary of the elastic solid at its outer sur-
face will be fixed by a zero displacement vector, which
ensures that the deformations of the elastic solid occur at
a constant total volume. The spherical hard inclusion(s)
will be repeatedly subjected to small rigid displacements
from their initial state in an initial stress- and strain-free
solid. These displacements create non-zero stresses and
strains in the elastic solid, and raise its elastic free energy,
relative to its value in the stress- and strain-free state.
The medium is taken to be a pure (1-component) ma-
terial, and the temperature and amount of material in
the system will be fixed. Consequently, the total HFE is
the appropriate thermodynamic criterion for stability [12].
The total HFE will be determined by numerically integrat-
ing the HFE density over the volume of the soft elastic
solid.

The calculations are of two kinds. First the strain and
stress tensors in the stressed elastic medium containing
the embedded inclusions are determined. These are sub-
sequently used to determine the total elastic HFE of the
medium. All the calculations are done numerically.
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2 Calculations

2.1 Stresses and strains in the elastic medium

2.1.1 Definitions

We will use the word “object” to refer to a cavity, a hard
sphere, or a solid elastic sphere, and the inclusions will be
taken to be “perfectly bonded”. This means that all points
in the elastic medium in the un-deformed state are “at-
tached” (in the sense of being mathematically connected)
to a point on the surface of the hard inclusion(s), and will
remain attached to the corresponding point(s) after the
deformation.

2.1.2 The Neuber-Papkovich and Schwarz solutions

The general solution of elastic problems with spherical
symmetry has been known for some time. This includes
problems such as a spherical cavity embedded in an in-
finite elastic medium, the solid sphere, the solid elastic
shell, and others [18]. The general solution for these prob-
lems is known both for Dirichlet and Neumann boundary
conditions, which are characterized by prescribed displace-
ments, and prescribed tractions, respectively. The bound-
ary conditions are applied to the concentric spherical sur-
faces.

The solutions provided by Lur’e [18] are based on
the Papkovich-Neuber general solution for problems with
spherical symmetry [19,20]. Below, for the sake of com-
pleteness in this work, we reproduce these solutions for
various types of spherical objects using both Dirichlet and
Neumann boundary conditions. These expressions, and
their detailed derivations, are given in ref. [18].

Solid sphere, prescribed displacements

When displacements are prescribed at the surface of a
spherical solid (r = r0), the solution for the displacement
vector at any point in the medium r, with r ≤ r0, is

u = U +
1

2

(

r2
0 − r2

)

∞
∑

n=2

∇∇ · Un

(3 − 4ν) + n + 2ν − 2
. (1)

In eq. (1) it is assumed that the prescribed displacements
can be written as

U =

∞
∑

n=0

(

r

r0

)n

Y
(u)
n (θ, ϕ) ≡

∞
∑

n=0

Un, (2)

where Y
(u)
n (θ, ϕ) is a vector whose i-th component is

[

Y
(u)
n (θ, ϕ)

]i

≡ Y
(ui)
n (θ, ϕ)

=

n
∑

m=0

Pm
n (cos θ)

[

A(ui)
n,m cos(mϕ)

+ B(ui)
n,m sin(mϕ)

]

. (3)

The sum on the right of eq. (3) is over the spherical har-
monics, Pm

n (cos θ) is an associated Legendre polynomial,
and (θ, ϕ) are the polar and azimuthal co-ordinates of a
point on the surface of a sphere [21]. Also, in eq. (1), ν is
the Poisson ratio of the elastic medium, which is a measure
of the amount of transverse stretching or contraction, that
results from an applied strain along a particular direction.

Spherical cavity in an infinite elastic medium, prescribed
displacements

For the problem of an infinite solid containing a single
spherical cavity centred at the origin of the coordinate
system, with prescribed displacements at the boundary of
the cavity, the solution for the displacement vector at an
arbitrary point r, with r ≥ r0, is given by

u = U +
1

2

(

r2 − r2
0

)

∞
∑

n=0

∇∇ · U−n−1

(3 − 4ν)(n + 1) + 2 − 2ν
, (4)

where

U =

∞
∑

n=0

(r0

r

)n+1

Y
(u)
−n−1(θ, ϕ) =

∞
∑

n=0

U−n−1, (5)

and Y
(u)
−n−1(θ, ϕ) is the vector whose i-th component is

[

Y
(u)
−n−1(θ, ϕ)

]i

≡ Y
(ui)
−n−1(θ, ϕ)

=

n
∑

m=0

Pm
n (cos θ)

[

A
(ui)
−n−1,m cos(mϕ)

+ B
(ui)
−n−1,m sin(mϕ)

]

. (6)

The coefficients of the expansion are formally defined
by

A(Ti)
n,m =

2n + 1

2πλm

(n − m)!

(n + m)!

×

∫ 2π

0

dϕ

∫ 1

−1

{Ti(µ, ϕ)|r=R0

× Pm
n (µ) cos(mϕ)dµ} , (7)

and

B(Ti)
n,m =

2n + 1

2πλm

(n − m)!

(n + m)!

×

∫ 2π

0

dϕ

∫ 1

−1

{Ti(µ, ϕ)|r=R0

× Pm
n (µ) sin(mϕ)dµ} . (8)

from which their values can, in principle, be determined.
In eqs. (7) and (8), µ ≡ cos θ, λm=0 = 2 and λm �=0 =
1. Similar expressions for other coefficients are found by
exchanging Ti → ui and n → −n − 1 where appropriate.

However, we will not obtain the expansion coefficients
by this method, rather we will obtain them from the solu-
tion of a linear system of equations that provide Least-
squares fits to an over-determined approximate set of
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equations (see sect. 2.2.2, below). The reason for not us-
ing the defining expressions to evaluate the coefficients
is that the terms Ti(θ, ϕ)|r=r0

change after every itera-
tion, for every object in the composite system (because of
the Schwarz “alternating method” that is used (below)).
Also, we do not know, in advance, the functional form
of Ti(θ, ϕ)|r=r0

, but rather a set of its values at a finite
number of points.

2.1.3 Strain and stress tensors

Assuming we know the coefficients of the harmonic expan-
sion for any of the problems listed in the previous section,
we can obtain the strain tensor through direct derivatives
of the displacement vector

uij =
1

2
(∂iuj + ∂jui). (9)

Also, we assume our elastic material obeys linear
stress/strain relationships (or, equivalently, a generalized
Hooke’s law), so that [3,22]

σij =
1

2G

(

uij +
ν

1 − 2ν
ukkδij

)

. (10)

Thus, by differentiating eqs. (1)-(4), and using the re-
sults in eq. (10), we can obtain the strain and stress tensor
components in the medium for all the problems described
by eqs. (1)-(4).

2.1.4 Schwarz alternating method

If more than one object is embedded in the elastic
medium, spherical symmetry is lost. As part of the solu-
tion of these problems, we will use the “Schwarz alternat-
ing method”. Basically, this consists of making a first guess
at the expansion coefficients, and then refining them itera-
tively until they stop changing. The method has been used
to solve a variety of problems, both for two- and three-
dimensional media, when there is more than one object
embedded in the elastic medium. Reference [7] provides a
list of authors who have used this method. In particular,
Sadraie and Crouch used this method to solve the prob-
lem of multiple spherical cavities embedded in an infinite
elastic medium [7,8].

In this work, we will apply Sadraie et al.’s develop-
ments described in refs. [7,8], but also extend them in
several ways in order to render them applicable our prob-
lem. Unlike Sadraie’s work that involved spherical cavities
in an infinite medium, we will here solve the problem of
multiple hard inclusions (hard spheres) embedded in a fi-
nite elastic medium. Moreover, in our work, the outermost
boundary of the elastic medium will be fixed, and the hard
spheres will be made to execute small rigid displacements.
Also, we will here provide solutions for all cases described
by eqs. (1)-(4), and also the cases developed in ref. [7].

. . .

H
0̇

H
1̇

H
2̇

H
3̇

H
Ṅ

. . .

H ′

1̇

. . .

H ′

2̇

. . .

H ′

0̇

. . .

H ′

3̇
. . .

H ′

Ṅ

=

+

+ +

+

Fig. 1. Decomposition of the actual system of Ṅ hard spheres
embedded in a spherical finite elastic medium (illustrated on
the left). The solution (illustrated on the right) is the sum of
Ṅ +1̇ superposed solutions of single objects. Each of these ob-
jects is subjected to the boundary conditions H ′

İ
, as explained

in the text.

2.2 Numerical implementation

As described in Sadraie et al. [7,8], when multiple ob-
jects are embedded in an elastic medium, the solution can
be found with the Schwarz alternating method by super-
posing harmonic expansions of the form (1), (4), and the
respective expressions when tractions are prescribed on
the surfaces. For our system, it will be sufficient to use
eqs. (1) and (4). For instance, if Ṅ hard inclusions (we
will denote the number of objects by dotted indices) are
embedded in an elastic sphere, then the elastic field at any
valid point in the elastic spatial domain is found by the
sum of superposed objects (Ṅ hard inclusions and 1̇ solid
elastic sphere), as illustrated in fig. 1.

In the system depicted in fig. 1, the actual system is
prescribed the boundary conditions Hİ , and the final so-
lution is the sum of that for an isolated system, of the
form given by eq. (1) for the elastic medium, and that

for Ṅ isolated systems, whose solution is of the form of
eq. (4) for the hard inclusions. Each isolated subsystem is
prescribed the boundary conditions H ′

İ
, which are given,

after the application of the Schwarz method, by

H ′
İ

= Hİ −
∑

İ �=J̇

H ′
J̇
. (11)

Here we use a global Cartesian system of coordinates
for the reference coordinate system. For each subsystem
(i.e. each single object), we translate the global Cartesian
coordinates to local Cartesian coordinates. The conver-
sion to local spherical coordinates is done subsequently.
This reduces both the computational time and the alge-
braic complexity that would otherwise have arisen (had we
used the addition theorem [23] to translate the spherical
coordinates).

In what follows, we will denote as Rİ the collection
of all points belonging to each individual boundary of the
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for ( i=1; i<=NumberOfObjects; i++ ) {

SetIsolatedCoefficientsToMatchBoundaryConditions();

}

converged=false;

while (converged == false) {

for ( i=1; i<=NumberOfObjects; i++ ) {

SetPrescribedDisplacementsToObjectI();

for ( j=1; j<=NumberOfObjects; j++ ) {

if ( i != j ) {

SubtractDisplacementsDueToOtherObjects();

}

}

FitCoefficientsOfObjectIUsingLeastSquareMethod();

SearchMaximumDifferenceInDisplacementsOfObjectI();

}

CheckForConvergence(); //converged = true or false

}

Fig. 2. Pseudo-code of the main algorithm for finding the
coefficients of the harmonic expansion for all the objects.

İ-th object, i.e.

Rİ =
{

(x, y, z) |r2
İ

= (x − cx

İ
)2 + (y − cy

İ
)2 + (z − cz

İ
)2

}

,

(12)

where rİ and
(

cx

İ
, cy

İ
, cz

İ

)

are the radius and the coordi-

nates of the centre of the İ-th object. Quite frequently, we
will use the following short-hand notation relative to the
centre of the inclusion:

dİ ≡

√

(

cx

İ

)2

+
(

cy

İ

)2

+
(

cz

İ

)2

. (13)

2.2.1 Main algorithm

To obtain the coefficients of the harmonic expansion of all
the objects comprising the system, we use the algorithm
depicted in fig. 2. A translation of the algorithm in fig. 2
into English would read as follows. Over-determine the
system by setting up more “control points” (points to be
fitted) than there are coefficients whose values are sought.
Using Least-squares initialize the coefficients to match the
system’s prescribed boundary condition for each object, as
if the object were isolated. Later, within the main loop,
apply the prescribed boundary conditions to the set of
control points (further described below). For our problem
this consists of setting the displacement of every control
point located at the surface of an object equal to a con-
stant displacement vector. Then, evaluate the contribution
of the remaining objects to the control points, and sub-
tract this from the current object’s control points. This is
followed by a Least-squares fit to match the updated har-
monic expansion coefficients of the current object. Repeat
this process for the remaining objects, using the corre-
sponding previously updated coefficients, which were ob-
tained before doing the current object. After this, run a
check for convergence to either stop or continue the loop.

Let

Lİ =
{

(xĪ , yĪ , zĪ) |Ī ≤ L̄, L̄ ∈ N+
}

⊂ Rİ (14)

be the set of control points of the İ-th object, where N+

denotes positive natural numbers, and let

uL
İ
≡ {u (xĪ , yĪ , zĪ) | (xĪ , yĪ , zĪ) ∈ Lİ} (15)

be the set of vector displacements at the points Lİ . Let

u
0
L

İ

≡
{

u
0 (xĪ , yĪ , zĪ) | (xĪ , yĪ , zĪ) ∈ Lİ

}

(16)

be the set of prescribed displacement vectors at the control
points Lİ , and let

u
∗
L

İ

≡
{

u
∗
Ī
≡ u

∗ (xĪ , yĪ , zĪ) | (xĪ , yĪ , zĪ) ∈ Lİ

}

(17)

be the set of displacement vectors of the İ-th object at an
arbitrary iteration step.

Finally denote

u
J̇ �=İ

Ī
= u

J̇ �=İ (xĪ , yĪ , zĪ) (18)

as the displacement vector contribution due to all objects
other than İ at the control point (xĪ , yĪ , zĪ). This is the
sum of the displacements caused by all the other objects
acting on the control points Lİ of the current object.

At each of the iterations, we evaluate the displacement
vectors at all control points belonging to each object’s
boundary as follows:

u
∗
L

İ

⊃ u
∗
Ī

= u
0
Ī
−

∑

J̇ �=İ

u
J̇ �=İ (xĪ , yĪ , zĪ) . (19)

Once we have determined the coefficients for the har-
monic expansion of each object, i.e. after each expansion
has met the convergence criteria (below), then we evaluate
the displacement vector at any point r as follows:

u(r) =

Ṅ
∑

İ=0̇

u
′
İ

(

r
′
İ

)

. (20)

Here r
′
İ

is the point r expressed in local coordinates of

the İ-th subsystem, and each u
′
İ

is of the form (1) or (4).
The traction vector and the strain and stress tensors are
found similarly.

2.2.2 Least-squares method for finding the coefficients of
the expansion using control points

Here we describe how we apply Least-squares, through a
QR decomposition, to obtain the coefficients of the har-
monic expansion of each individual object.

Assuming we truncate the spherical harmonic expan-
sion after the n = N term (see eqs. (1) and (4)), the

coefficients A
(ui)
n,m , B

(ui)
n,m , A

(ui)
−n−1,m, and B

(ui)
−n−1,m can be

arranged into an array “Cİ,n,m”, designed so that we can
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re-write our linear system of equations to have the follow-
ing structure:

U∗
L

İ

= M (Pm
n (µĪ), sin(mϕĪ), cos(mϕĪ))Cİ,n,m

= QRCİ,n,m. (21)

We use a complete harmonic expansion of N terms
for each coordinate x, y, and z. The column vector U∗

L
İ

(of 3L̄ components, or L̄ triads) contains all the values of
the displacement vectors u

∗
Ī

at every control point of the
object (see eq. (19)); M(Pm

n (µĪ), sin(mϕĪ), cos(mϕĪ)) is
a 3L̄ × (N + 1)2 matrix which holds the terms Pm

n (µĪ) ·
cos(mϕĪ), and Pm

n (µĪ) ·sin(mϕĪ); and CL
İ
,n,m is an (N +

1)2 array containing the coefficients of the expansion.
Additional technical details will be published else-

where, and the basic procedure can be found in refs. [7]
and [8].

By using the same values for the local coordinates
of the control points for each object comprising the sys-
tem, the QR decomposition needs to be performed only
once before entering the main algorithm shown in fig. 2
(see [24]). Subsequently, the Q and R matrices can be
reused in a back-substitution method to solve the system

QTU∗
L

İ

= RCİ,n,m. (22)

Here the superscript T means transpose, and a similar
procedure is carried out for the coefficients withn→−n−1.

As in refs. [7] and [8], we use an over-determined sys-
tem of linear equations with L̄ = 4(N+1)2. A factor larger
than “4” did not improve the accuracy.

The control points are selected from

µa = cos(θa) = 1 −
2(1 + a)

2N + 3
, (23)

where a = 0, 1, 2, . . . , (2N + 1),

ϕb =
π

N + 1
b, (24)

and b = 0, 1, 2, . . . , (2N + 1). Here, θ is the polar angle in
the spherical coordinate system, and ϕ is the azimuthal
angle in the x-y plane, i.e., ϕ is the vector projection angle
measured counter-clockwise with respect to the x axis.

Different combinations of the pairs (θa, ϕb) are used to
construct the set of control points with the barred indices
(see eq. (14)). Thus, L̄ = ab = 4(N + 1)2.

2.2.3 Convergence criteria

As in Sadraie et al. [7], at each iteration, and for every
object and every control point, we look for the maximum
value of the difference between the current value of the
displacement vector and its prescribed value, which we
denote by umax. Also, in the function FitCoefficientsOf-
ObjectIUsingLeastSquareMethod() in fig. 2, we compare
the coefficients of the current and previous iteration for
all the objects, and this difference is denoted as cmax. The

convergence is checked in the function CheckForConver-
gence(), which is based, essentially, on the following crite-
rion:

converged =
(

|umax| < min
(

δ, δ|u0
max|

))

&&
(

|cmax| < min
(

η, η|c0
max|

))

. (25)

Here “&&” is the logical operator “AND”, |u0
max| is the

analog of |umax| for the prescribed values (obtained during
the initialization in the function SetIsolatedCoefficients-
ToMatchBoundaryConditions), and |c0

max| is the equiva-
lent of |cmax| for the initial values of the coefficients. The
constants δ and η are two small real numbers which are
our tolerances for the displacements and the coefficients,
respectively.

Our detailed implementation of the algorithm in fig. 2
differs somewhat from that of Sadraie. This is mainly be-
cause we use a global Cartesian coordinate system, and
because we find the strain/stress tensor components by
differentiating the displacement vectors using a combina-
tion of global Cartesian coordinates and local spherical
coordinates. However, in order to validate our program,
we also solved the problem of two spherical cavities em-
bedded in an infinite elastic medium, with an initial pre-
scribed stress applied at the boundary at infinity. This
particular problem has been treated by several authors
(see [7] and references therein), and it serves as a bench-
mark because it contains different methods of solution for
the same problem. To an excellent approximation, we were
able to obtain the same values for one of the stress ten-
sor components at a set of different prescribed points lo-
cated on the boundaries of the cavities. The benchmark is
valid for different geometric configurations of the cavities
(obtained by varying the distance between the cavities’
centres). In the supplementary material, we compare our
results directly against those obtained by Sadraie et al.,
and others.

We further verified the accuracy of our calculations
by numerically solving the problem of a concentric hollow
sphere embedded in a spherical elastic medium, where the
inner boundary is given a constant displacement, and the
outer boundary is fixed. The analytical solution to this
problem is given in ref. [18]. The supplementary material
includes comparisons between the analytical solution and
the numerical results obtained using our implementation.

Finally, we mention that our program provided the
displacement and traction vectors, as well as the stress
and strain tensors, at any point in the elastic medium
outside of the hard inclusions.

2.3 Elastic free energy

We use Morris’ course notes on the thermodynamics of
linear elastic solids, to which the reader is referred for
further details, and for a very readable and comprehensive
treatment of the subject [12]. For reasons of completeness
within this work, we also write out some of his relevant
results below.
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When the characteristic independent variables in the
problem are temperature (T ), volume (V ), numbers of
moles of all the components ({n}), and shape of the sys-
tem, the Helmholtz free energy F (= E−TS, where E and
S are the system internal energy and entropy, respectively)
is the potential that governs the system. This means, for
example, that for a given T, V, {n}, F will be a minimum
when the elastic solid is in its most stable shape.

It is perhaps not superfluous to point out that our
system is not isolated. It exchanges both heat and work
with the surrounding environment, while being main-
tained at a constant total volume. Under these conditions
the Helmholtz free energy function provides the formally
correct criterion for stability. This function will be at a
stationary minimum when the system is in its most stable
configuration [12,25].

The fundamental variable that unambiguously reflects
the shape of the system is the “deviatoric strain tensor”,
whose elements we designate by ud

ij . These are defined

by ud
ij = uij − δijukk/3, which ensures that the devia-

toric strain is a pure shear. The deviatoric strain char-
acterizes the shape of the elastic solid at fixed volume.
In terms of its fundamental characteristic variables then,
the total system Helmholtz free energy can be written as
F (T, V {n}, ud

ij) [12].
In our problem the deviatoric strain cannot initially

be assigned. It is here not a controllable variable, but
rather an implicit function of other variables that need
to be specified, in order to carry out the calculations for
the stress and strain tensors in the final strained state. In
order to set up the system, we do the following. First T ,
{n}, and the initial volume of the elastic solid V 0 are fixed,
such that u0

ij = σ0
ij = 0 everywhere. Then, the strained

elastic solid in the final state is created by a two-step pro-
cess. 1) We insert exactly fitting hard sphere(s) into pre-
existing cavities that had been created at specific locations
within the unstrained and unstressed elastic solid. 2) We
apply Dirichlet boundary conditions that will both main-
tain the system at a fixed volume, and create a strained
final state with a new shape. The volume is kept fixed by
setting the displacement vector at the outer surface of the
elastic solid to zero. A non-zero strain throughout the elas-
tic solid, and a change of its shape, is created by displacing
the hard sphere inclusion(s) by some small definite amount
relative to their initial location. This change is character-
ized by setting the displacement vector at the surface of
the inclusion(s) in the final state to some non-zero value
(see also sect. 4.1 and fig. 5 below, for an explicit and
graphical explanation). Our calculations ultimately pro-
vide the stress and strain tensors throughout the elastic
medium, from which the deviatoric strain tensor can be
extracted (if desired).

If work against the elastic forces of a solid is done
quasi-statically (or, using physical chemistry terminology,
“reversibly”), then the total work done in order to achieve
a given elastic strain u starting from a strain-free reference
state is given by

W =

∫

V

(
∫

u

0

σijduij

)

dV. (26)

The inner integral, which represents the work against
elastic forces, per unit volume, is readily carried out by
applying Hooke’s law, written in generalized form

σij = σ0
ij + λijklukl. (27)

In eq. (27), σ0
ij is the stress tensor in the strain-free

reference state, and λijkl is a tensor of the elastic constants
that is appropriate to how the strain is accomplished (e.g.
isothermally, adiabatically, etc.), and is characteristic of
the material.

Using eq. (27) for σij in eq. (26) gives

W =

∫

V

(
∫

u

0

[

σ0
ij + λijklukl

]

duij

)

dV

=

∫

V

(

σ0
ijuij +

1

2
λijkluijukl

)

dV (28)

=
1

2

∫

V

(

σ0
ij + σij

)

uijdV. (29)

In going from eq. (28) to eq. (29), we again used Hook’s
law to replace λijklukl by (σij − σ0

ij).
In this work the solid is strained at constant temper-

ature, constant volume, and constant number of moles of
material, which is taken to be a pure 1-component elastic
solid. Under these conditions, λijkl is the tensor of isother-
mal elastic constants [12], and the work done against the
shear resistance of the elastic solid adds directly to the
Helmholtz free energy, which can now be written as

F
(

T, V, ud
ij

)

= F 0
(

T, V 0
)

+
1

2

∫

V

(

σ0
ij + σij

)

uijdV. (30)

In eq. (30) F 0(T, V 0) is the total Helmholtz free en-
ergy of the elastic solid in the strain-free reference state
at temperature T and volume V 0, and the second term
on the right is the elastic strain contribution to the total
Helmholtz free energy. Also, since our system is main-
tained at a fixed volume, V = V 0. The term (σ0

ij +
σij)uij/2 represents the Helmholtz free energy density, i.e.
the Helmholtz free energy per unit volume, within an in-
finitesimally small volume element in the elastic medium.

Equation (30) is general, in the sense that it is written
to allow for an arbitrary choice of the reference state stress
tensor. However, for purposes of carrying out our calcu-
lations which require a stress-free reference state [18], we
choose the reference state to be stress free. Therefore we
set σ0

ij = 0, so that our working equation for determining
the total elastic Helmholtz free energy becomes

F el ≡ (F − F 0) =
1

2

∫

V

σijuijdV. (31)

It should be evident from eq. (31), that F el and F will have
exactly the same shape-dependence. This is because F 0,
the total Helmholtz free energy of the stress- and stain-free
reference state, is not shape-dependent. Consequently, the
shape corresponding to the minimum F el is the same as
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Fig. 3. Comparison of the elastic Helmholtz free energy (F el)
as a function of the off-centred distance (d) of the inclusion,
using different numerical integration schemes. Here d ≡ d

1̇
of

eq. (13), F el was determined using eq. (31), and NG and NMC

are the numbers of Gauss and Monte Carlo points, respectively.

the shape corresponding to the minimum F , which is the
most stable shape the elastic solid can assume.

In what follows, we will use the following definition for
the Helmholtz free energy density:

f(r) ≡
1

2
σijuij . (32)

3 Overview of computational details

3.1 Accuracy and consistency

The stress and strain tensor components were evaluated as
described in sect. 2.1, and their correctness and accuracy
were confirmed by checking against the results of other
authors, and against some analytical results. Details are
provided in Online Resource 1 (see Supplementary Infor-
mation to this paper).

These components were subsequently used in eq. (31)
to determine the total elastic Helmholtz free energy (F el).
Two numerical schemes were used to evaluate the inte-
gral on the right-hand side, which is over the volume of
an elastic solid sphere that contains within it one or more
embedded hard sphere inclusions at arbitrary locations.
The integration domain excludes the embedded spherical
inclusions. One was Gauss Quadrature, and the other was
a basic Monte Carlo method [21]. The latter, which is ro-
bust and easy to apply to irregular geometric domains,
was used to check the results from our Gauss Quadrature
method, to set error bounds on the calculated free ener-
gies, and to handle the case of four embedded hard sphere
inclusions, for which the Gauss Quadrature method was
impractical.

In fig. 3 we compare the two methods, for the case
of a single off-centred inclusion. As seen, the two meth-
ods agree to within the Monte Carlo-based error bounds,
and the Gauss Quadrature is some 3-4 orders of magni-
tude faster than the Monte Carlo method. The prescribed

Table 1. Values of the physical parameters used in generating
figs. 3 to 11.

Parameter Symbol Value (s)

Outer radius of the elastic medium Ra 2

Radius of the hard inclusion Rb 0.3

Poisson ratio σ 0.4996

Shear modulus (atm) G 0.01

Prescribed displacement magnitude |uz

0| 0.1

displacement vector at the surface of the hard inclusion is
here u0(Rİ) = (0, 0, 0.1), and obviously, changing the sign
of the non-zero component produces the same results.

3.2 Computer time requirements

The time to do a single free energy calculation (i.e. that
for the free energy change resulting from a single displace-
ment of an embedded hard sphere(s)) depended heavily on
the numbers of terms retained in the spherical harmonic
expansion of the distance (see eqs. (1) and (4), above). We
needed to retain 24 to 32 terms for the closest distances we
considered. (By a “distance”, here, we mean the distance
between a hard-sphere boundary and another hard-sphere
boundary or to the external boundary of the medium.) A
full calculation of the stress and strain tensor components
throughout the medium, followed by a numerical integra-
tion of the HFE density over the volume of the medium,
required from ∼ 2min to ∼ 20min, depending on the num-
bers of terms retained and on the integration method (for
obtaining the HFE), respectively. The calculations were
done on a currently standard workstation (quad-core cpu,
2.8 GIG Hz, 16GB RAM).

We point this out in order to provide an indication of
what types of calculations were, and were not, feasible.
We were able to work out a number of free energy sur-
faces involving 400 points each, in order to get some idea
of the form of the relatively stable hard-sphere configura-
tions (some of them are shown here, and others are given
in the Supplementary Information to this paper). However
calculation methods designed to seek out and identify the
configuration(s) that most likely corresponds to a global
free energy minimum, such as Simulated Annealing [21],
were obviously totally out of the question. Even a fairly
modest Simulated Annealing run of 106 steps (10 temper-
atures, each using 105 steps), for a point requiring 2min,
would have required about four years to complete on our
(standard) workstation.

4 Results

Unless otherwise specified in the figure caption, we used
the parameter values entered in table 1 for the figures
shown in this and in the previous sections. The values en-
tered for the Poisson ratio and Shear modulus are roughly
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Fig. 4. The magnitude of the displacement vector, and the
elastic HFE density for a single hard sphere embedded in an
elastic sphere. In the upper row, we show the results for the
hard sphere concentric with the medium, and in the lower row
we show the results for non-concentric case. Here the radius
of the medium is 2, the radius of the inclusion is 0.3, and the
magnitude of the prescribed displacement is 0.2.

representative of the values of these functions in soft bi-
ological solids such as muscle, liver, heart, cartilage and
others [26].

Since a precise assignment of the Poisson ratio and
Shear modulus cannot be made for kidney tissue, which
is here of particular interest, we include additional results
in the Supplementary Information, in order to show the
effect of a reasonable variation in the parameter values
for these types of materials. Different values of the shear
modulus affect the absolute values of the HFE, but not
the shape of its landscape.

4.1 One hard inclusion

In fig. 4 we show the elastic HFE density (see eq. (32)), and
the magnitude of the displacement vector in the x-z plane
of the elastic medium, for two geometric configurations. In
the upper and lower rows we show the results for concen-
tric (d ≡ d1̇ = 0, see eq. (13)), and non-concentric (d �= 0)
geometries, respectively. As expected, the concentric and
non-concentric geometries involve respectively, symmetri-
cal and unsymmetrical distributions with respect to the
z-axis.

While these plots give the distributions within the x-
z plane, the distributions are azimuthally symmetric. In
all cases, the prescribed displacement vector for the hard
sphere u0 = (0, 0, 0.2), and it is zero at the outer surface
of the elastic medium.

In fig. 5, we illustrate the effect of the magnitude of
the displacement vector on the elastic Helmholtz free en-
ergy, for a single hard inclusion. We plot the total elastic
Helmholtz free energy as a function of distance from the
origin of the hard inclusion’s centre, for three different
values of the displacement vector.
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Fig. 5. Elastic Helmholtz free energy (F el) as a function of
the distance of the inclusion’s centre from the origin (“d”,
measured within the initial stress- and strain-free state), for
different values of the magnitude of the displacement vector.
The values used for the radius of the hard sphere inclusion and
the elastic medium’s parameters are entered in table 1.

It is worthwhile to briefly pause at this point, and to
make explicit the physical meaning of these curves. For
definiteness, consider the dashed blue curve. Its point of
intersection with the vertical axis (at d = 0) is F el ∼
0.0017; at d = 1.4 its value of F el ∼ 0.0028. This means
that when a hard sphere, initially at d = 1.4, of radius 0.3,
embedded in an elastic medium of radius 2, shear modu-
lus 0.01, and Poisson ratio 0.4996, is displaced along the
z-direction by 0.2 units, with the medium initially stress-
and strain-free, the increase in the elastic Helmholtz free
energy of the medium is raised by ∼ 0.0011 units (i.e.
∼ 65%) relative to the corresponding increase at d = 0.
At both the initial and final states of the displacement,
the net mechanical force in any direction, exerted on the
inclusion by the medium, is exactly zero. This is charac-
teristic of any stable mechanical state in an elastic system,
and results from solving the Neuber-Papkovich-like equa-
tions for elastic stability. The elastic stresses and strains in
the medium re-adjust until the net force on an inclusion,
fixed at a particular point, is zero.

Both displacements occur while the total volume of
the medium remains constant —a condition ensured by
maintaining zero displacement vectors at the outer surface
of the medium.

While F el is shown to depend both on the magnitude
of the prescribed displacement (|uz

0|), and on “d”, a sta-
tionary minimum was always found at d = 0. Thus, the
most stable shape of the elastic medium containing a sin-
gle inclusion is that of a spherical shell, with the embedded
hard sphere —in the stress-free and strain-free medium—
at its centre. This result was invariant with the radius of
the inclusion, that of the medium, and with the magni-
tude of the displacement vector (provided the latter is in
some sense “small”). This result is a basic manifestation of
shear resistance, i.e. a tendency to favour the movement
of embedded inclusions toward the centre of the material,
and away from their outer surface.
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Fig. 6. The magnitude of the displacement vector, and the
HFE density for a system with two hard inclusions embedded
in an elastic sphere. The upper row shows the case for the hard
inclusions given opposite-direction displacements (of the same
magnitude), and in the lower row the prescribed displacements
are in the same direction for both spheres. The arrows on the
left reflect the sign of the uz

0 component of the displacement
vector.

4.2 Two hard inclusions

Both the direction and magnitude of the displacement
vectors will affect the strain and the HFE density in the
medium. In fig. 6, we show the displacement vector’s mag-
nitude, and the HFE density (see eq. (32)) in the x-z plane
for the hard inclusions undergoing rigid displacements in
opposite directions (upper row), and in the same direction
(lower row). The displacements have the same magnitude
in both cases, and both inclusions have the same radius.

In nature, parallel displacements (that cause inclusion
movement in the same direction) will arise more read-
ily than will radial displacements (that cause the inclu-
sions to simultaneously move either towards or away from
the centre of the medium). For example, if a person were
jumping up and down in a gravitational field, any inclu-
sions present in a soft tissue in their body would be acted
upon by a gravitational force simultaneously and in the
same direction: down when the person jumps up, and up
when the person lands on the ground. Also, sudden hori-
zontal (non-gravitational) accelerations/decelerations of a
system would cause non-inertial forces to arise along the
direction of motion, and these forces would cause parallel
displacements of any hard inclusions.

One the other hand, one requires a laboratory type of
environment or set-up to effect radial displacements. This
might be imagined to be done by having as inclusions
charged conducting spheres of like or unlike signs, where
their charge can be turned on or off at will, or spheres
made of paramagnetic/diamagnetic materials, with an ex-
ternal magnetic field (which can also be switched on or off
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Fig. 7. The total elastic HFE (F el) as a function of dis-
tances from the origin (du, dl). See also eq. (13) with d

1̇
→ du

and d
2̇
→ dl. The two inclusions here have the same radius

(ru = rl = 0.3), and both are subjected to prescribed displace-
ments of the same magnitude (0.1) but in opposite directions
(i.e., the hard inclusions approach each other). The white point
corresponds to the minimum of the elastic HFE.

at will). This would not occur naturally, but might be
done as a test on some of the results shown here.

Here we will consider both types of displacements, and
generate a few free energy curves corresponding to each.
We do this in order to get some idea of what configurations
are favoured by shear resistance, and we will do this both
for two inclusions (in this section) and for four inclusions
(in sect. 4.3, below).

When both inclusions are displaced in opposite direc-
tions (upper row of fig. 6), the elastic system displays small
values of the stress and the HFE density in a region near
the centre of the medium. The stress is then distributed
mostly on the hard inclusions’ boundaries which have be-
come closer to the elastic medium’s boundary. The plots
display the distributions in the x-z plane, but the distri-
butions are azimuthally symmetric. In all cases, the pre-
scribed displacement vectors for the hard inclusions are
u0 = (0, 0,±0.1), and zero for the surface of the elastic
medium. The sign of the uz

0 component is a reflection of
whether the displacements are proportional to the radius
vector of the inclusion centres (±), or are the same for
both inclusions (+). (See arrows on the left in fig. 6.)

In figs. 7 and 8 we show the total elastic HFE surfaces,
as functions of the upper and lower distances du and dl

(defined in the insets).
In fig. 7, both inclusions have the same radius, and

the energy landscape is clearly symmetric, with a centred
minimum.

In fig. 8 the inclusions have different radii, and the
energy surface is no longer symmetric. Here, the larger
inclusion tends to be closer to the centre than the smaller
inclusion.

In fig. 9, we show the elastic HFE as function of the
distances du and dl for the case where both inclusions are
subjected to the same displacement (i.e. both inclusions
are displaced by the same amount, and in the same direc-
tion). As seen from the figure, the closer the inclusions are
to each other, the lower is the total elastic HFE. In qual-
itative terms, when the displacements of both inclusions
are the same, they behave as though they are parts of a
single rigid body.
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Fig. 8. The total elastic HFE (F el) as a function of distances
from the origin (du, dl). See also eq. (13) with d

1̇
→ du and

d
2̇
→ dl. The radii of the hard inclusions are ru = 0.3 and

rl = 0.4. As in fig. 7, the inclusions are subjected to prescribed
displacements of the same magnitude (0.1) but with opposite
directions (i.e., the hard inclusions are moving away from each
other). The white point corresponds to the minimum of the
HFE.
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Fig. 9. The elastic HFE (F el) as a function of the distances
from the origin (du, dl). See eq. (13) with d

1̇
→ du and d
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→ dl.

Here the two inclusions have the same radius (ru = rl = 0.3)
and both are subjected to prescribed displacements of the same
magnitude (0.1), in the same direction. The minimum of the
elastic HFE (black dot) is located at the lower left corner of
the surface. The two hard spheres are here almost in contact
with one another.

4.3 More than two inclusions

When more than two inclusions are embedded in the elas-
tic medium, there is no simple way to present the resultant
multidimensional elastic total HFE landscape. However,
some insight can be gained using specific examples, such
as when the inclusions are all located within the same
plane, and are all subjected to the same small rigid dis-
placements.

Figure 10 depicts the magnitude of the displacement
vector and the elastic HFE density (see eq. (32)) through
the plane x-z of an elastic solid system, which contains
four inclusions. In the upper row, the inclusions are sub-
jected to small rigid displacements proportional to the ra-
dius vector of each inclusion’s centre, while in the lower
row, the inclusions are subjected to the same small rigid

displacement (along the k̂ direction). Some rotational
symmetry along the y axis is observed for the first case,
and the elastic HFE density is higher near the inclusions’
boundaries.

Fig. 10. Distribution of the displacement vector’s magnitude
and the elastic HFE density for a system with four hard inclu-
sions. The upper row illustrates the case wherein the displace-
ments are proportional to the vector connecting the origin to
the centre of the respective hard inclusion. The prescribed dis-
placements here have the same magnitude. In the lower row,
we show the case when the prescribed displacements are all in
the same direction (here k̂). The radius of each inclusion is r

İ
,

and the arrows on the left indicate the direction of the non-zero
component of the prescribed displacement.
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Fig. 11. The total elastic HFE as a function of the distance
from the origin d, when the prescribed displacements are pro-
portional to each inclusion’s radius vector from the centre
(black solid curve), and when the displacements are all taken
to be a constant u0 (blue dashed curve). The radius of each
inclusion is 0.2, the radius of the elastic medium is 2, and the
value of d for each point in the plot is the same for all four hard
inclusions. The values of the total elastic HFE were obtained
using a Monte Carlo integration for both curves (see text).

In fig. 11 we show the total elastic HFE of a system of
four inclusions, as a function of the distance (d) measured
from the origin of the elastic medium to the centre of each
hard inclusion. For simplicity, all the inclusions in this
system are at the same d, and they are all located in the
x-z plane. The case wherein the prescribed displacement of
each inclusion is radial and proportional to the magnitude
of the radius vector of the inclusion’s centre, is shown as
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the black solid curve, while that for constant prescribed
displacements (all in the same direction) are shown by the
dashed blue curve.

As with two inclusions (fig. 7), the total elastic HFE
has a stationary minimum when d lies somewhere be-
tween the elastic medium centre and its boundary (here
dmin ∼ 1.1). In contrast, when the inclusions are subjected
to the same prescribed displacement u0 (dashed blue line
in fig. 11), a thermodynamic gradient arises, such that the
most stable state corresponds to the inclusions being as
close as possible to each other (d ∼ 0.35). This suggests
that if the four inclusions were, over time, to be caused to
move in parallel, they might escape from their local mini-
mum at d ∼ 1, F el ∼ 0.0015, and form a more stable four-
particle near-contact cluster at d ∼ 0.35, F el ∼ 0.0005.

5 Discussion and summary

We found the geometric configurations that present a
minimum in the total elastic Helmholtz Free Energy for
an elastic solid embedded with one, two, and four per-
fectly bonded hard sphere inclusions. The elastic medium
had a fixed amount of material, and was subjected
to constant-volume, constant-temperature deformations.
The boundary conditions that provide a constant volume
deformation of the elastic solid consist of a zero displace-
ment vector at the outer boundary of the solid, and small
displacements of the embedded hard spheres. For systems
with more than one embedded hard sphere, we studied two
types of displacements: (a) prescribed rigid displacements
that are axial and proportional to the vector of the hard
sphere centre, and (b) prescribed rigid displacements that
have the same constant value for all the hard spheres (i.e.
the hard spheres are displaced as though they were parts
of a single rigid body). For one hard sphere, the most
thermodynamically stable state had a stationary elastic
Helmholtz free energy minimum, and corresponded to the
hard sphere at the centre of the system. For two and four
hard spheres, if the prescribed displacements were pro-
portional to the vector of the hard sphere centre, the to-
tal elastic HFE had a stationary local minimum located
at some distance intermediate between the origin and the
boundary of the elastic medium.

For two hard spheres with different radii, the total elas-
tic HFE is a surface with a stable minimum, with the
hard spheres separated by some distance. If the system
has more than one hard sphere, wherein all are subjected
to the same prescribed rigid displacement, then the in-
clusions have a conditional minimum such that the hard
spheres are as close to each other as possible. These condi-
tional minima, for which the hard spheres were nearly in
contact, corresponded to lower values of the Elastic HFE
than arose using radial displacements, which produced
local minima in which the spheres were not in contact.
For each type of prescribed displacement, the Helmholtz
free energy gradient will, in the long time thermodynamic
limit, cause the spheres to favour the configuration corre-
sponding free energy minimum for that type of displace-
ment.

Had the inclusions been slightly deformable (as op-
posed to being perfectly rigid hard spheres), we would ex-
pect the HFE landscape to change slightly, but not dras-
tically, or qualitatively. In this case the elastic free energy
change of the inclusions would have to be included in the
computation of the HFE. But with respect to our motiva-
tion, which was to model kidney stones in kidney tissue,
we believe that a model of (perfectly rigid) hard spheres in
a soft elastic medium is reasonable. Furthermore, provided
(as in our work), the total volume of the system remained
constant after the displacements, the HFE would again be
the criterion for thermodynamic stability.

We are grateful to the Natural Sciences and Engineering
Research Council of Canada (NSERC) for financial support
in the form of a Discovery Grant (6831-2011) to one of us
(SG). JMSA would also like to thank ELI-Beamlines (project
CZ.1.05/1.1.00 /02.0061) for providing him the time needed for
the final revisions of the paper. We also thank the anonymous
reviewers of the European Physical Journal E, whose insightful
comments helped us to improve the paper. Most of the work
for this paper was done at the University of Guelph. JMSA’s
contribution to the final revision was carried out while he was
in the Institute of Physics AS CR.

References

1. A.E.H. Love, A treatise on the mathematical theory of elas-
ticity, 2nd edition (Cambridge University Press, 1906).

2. S.P. Timoshenko, J.M. Gere, Theory of elastic stability,
2nd edition (McGraw-Hill, 1963).

3. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics:
Elasticity Theory (Pergamon Press, 1989).

4. A.S. Saada, Elasticity: Theory and applications, 2nd edi-
tion (J. Ross Publishing, 2009).

5. M.F. Beatty, J. Elast. 104, 71 (2011).
6. M. Ameen, Computational elasticity: theory of elasticity,

finite and boundary element methods (Alpha Science In-
ternational, 2004).

7. H.R. Sadraie, S.L. Crouch, Comput. Mech. 37, 60 (2005).
8. H.R. Sadraie, S.L. Crouch, S.G. Mogilevskaya, Eng. Anal.

Bound. Elem. 31, 425 (2007).
9. T.W. Ting, J.C.M. Li, Phys. Rev. 106, 1165 (1957).

10. T.H.K. Barron, R.W. Munn, Pure Appl. Chem. 22, 527
(1970).

11. A.G. McLellan, The classical thermodynamics of de-
formable materials (Cambridge University Press, 1980).

12. J.J.W. Morris, Course notes: Thermodynamics and
phase transformations, http://www.mse.berkeley.edu/

groups/morris/MSE205/Extras/Elastic.pdf.
13. A. Mundy, J. Fitzpatrick (Editors), The Scientific Basis

of Urology, 3rd edition (CRC Press, 2010).
14. J. Baumann, B. Affolter, World J. Nephrol. 3, 256 (2014).
15. D.R. Basavaraj, C.S. Biyani, A. Browning, J.J. Cartledge,

European Association of Urorlogy and European Board of
Urology, EAU-EBU Update Series 5, 126 (2007).

16. A.R. Izatulina, Y.O. Punin, O.A. Golovanova, J. Struct.
Chem. 55, 1225 (2014).

17. S. Goldman, J. Chem. Phys. 132, 164509 (2010).



Eur. Phys. J. E (2015) 38: 133 Page 13 of 13

18. A.I. Lur’e, D.B. McVean, J.R.M. Radok, Three dimen-
sional problems of the theory of elasticity (John Wiley and
Sons, Ltd., 1964).

19. P.F. Papkovich, C. R. Acad. Sci. 195, 513 (1932).
20. H. Neuber, ZAMM-Z Angew. Math. Me. 14, 203 (1934).
21. W.H. Press, B.P. Flannery, S.A. Teukolski, W. Vetterling,

Numerical Recipes, The art of Scientific Computing (FOR-
TRAN version) (Cambridge University Press, 1989).

22. S. Timoshenko, J.N. Goodier, Theory of Elasticity
(McGraw-Hill, 1951).

23. G.B. Arfken, H.J. Weber, Mathematical methods for physi-
cists, 6th edition (Elsevier Inc., 2005).

24. I. Jankovic, High-order analytic elements in modeling
groundwater flow, Ph.D. thesis, University of Minnesota,
Minneapolis (1997).

25. E.A. Guggenheim, Thermodynamics - An advanced Treat-
ment for Chemists and Physicists (North-Holland, 1967).

26. J.M. Solano-Altamirano, J.D. Malcolm, S. Goldman, Soft
Matter 11, 202 (2015).


