Atomic Force Microscopy Study of Cellulose Thin Films

Amanda Quirk, Maohui Chen, and Jacek Lipkowski, Department of Chemistry, University of Guelph; Chris Vandenende, Darrel Cockburn, and Anthony Clarke, Department of Molecular and Cellular Biology, University of Guelph; John Dutcher, Department of Physics, University of Guelph and Sharon Roscoe, Department of Chemistry, Acadia University

System

- **Cellulose**
 - Bacterial cellulose grown in Clarke laboratory from Acetobacter xylinum
 - Read beat in methanol with 2.5 mm beads for approximately 15 mins
 - Small samples centrifuged to remove small glass particles

Enzymes

- **β-glucosidase**
- **Cellulohydrolyase**
- **Endoglucanase**
- **Hole**: sequential degradation
- **Common Design**:
 - Carbohydrate binding domains (CBM)
 - Catalytic domains
- **Susceptibility of reaction**:
 - Degree of cellulose polymerization
 - Cellulose crystallinity
 - Surface area

Carbohydrate Binding Domain

- **Responsible for binding the enzyme to cellulose**
- **More than 30 different families of CBMs have been identified**
- **Example**: Wedge shaped structure with two flat surfaces

Film Preparation

1. **Modify Gold - Self Assembly of Thiols**
 - Gold on glass slides used as cellulose substrate for LB transfers
 - Thin films of cellulose will not stick to surface in solution
 - Cellulose in solution needed for enzyme studies and electrochemistry
 - Need to make surface hydrophilic
 - Use short thiols:
 - Thioglycerol
 - Thioglycolic acid

2. **Cellulose Film - Langmuir-Blodgett Transfer**
 - Spread cellulose dispersion and let volatile solvent evaporate.
 - Compress monolayer and transfer to a solid substrate (gold slide)

Motivation

Cellulose Biodegradation

- Availability of bioenergy and biofuels depends on our ability to overcome issues with the conversion of biomass
- A key step is the efficient release of glucose from feedstock

Imaging the enzymatic activity of the cellulose enzymes on a cellulose substrate will help to better understand the synergistic and mechanistic effects of the biodegradation of cellulose.

Studying the biodegradation of cellulose is of significant interest, as cellulose currently constitutes a large source of waste biomass. The complete hydrolysis of cellulose leads to an easily fermentable sugar glucose.

When glucose is biologically converted into other products such as ethanol, it can provide environmental, economic, and strategic benefits on a large scale. With the depletion of fossil fuels the hydrolysis of cellulose is becoming an increasingly important biotechnology.

It is therefore of great interest to completely understand the process of enzymatic degradation and propose industrial applications.

Principles

Atomic Force Microscopy

- A magnetic field is used to drive a magnetically coated cantilever at or near its resonance frequency
- The oscillating tip was moved close to the surface so that it just tapped the surface.
- There is a reduction in the oscillation amplitude contributes to the identification of surface features.
- MAC mode is ideal for soft and fragile samples like the proteins used in this study.

Results

Representative Cellulose Fibers

- Imaging conditions:
 - Thioglycerol: Dried Sample; Contact mode; Water

High Resolution of Fibers

- Imaging conditions:
 - Contact mode; Phosphate buffer pH 7.4

Degradation Studies

- Target Fiber: 3 mins 30 mins 60 mins
- Sigma Cellulase on cellulose in phosphate buffer (pH 7.4) at Low Temperature (~7 °C)
- Imaging conditions:
 - Au-Thioglycerol and Thioglycolic acid
 - MAC mode AFM
 - Add 0.1 ml 1 mg/ml
 - CenA in phosphate buffer
 - Image over 20 hrs

Enzymes on Fibers

- Before enzyme: 3 hrs
- After enzyme: 19 hrs

Never Dried

- Conditions:
 - Thioglycerol, no drying
 - MAC mode, phosphate buffer

Future Work

- Binding Studies:
 - Improve resolution of enzymes on fibers
- Determine specific binding sites
- Degradation:
 - Use active enzymes on amorphous cellulose samples
- Perform temperature and pH studies

References:

1. www.molec.com
2. www.nsrc.org

Funding:

[NSERC CRG]

Collaboration:

[NSERC CRG]

CenA on Gold

- Endoglucanase
 - 25.5 nanometer maximum diameter
 - Heat: catalytic domain
 - Tail Binding domain (10 nm)
 - 47 Å, 8 nm

Future Work:

- Bind enzymes to cellulose fibers
- Determine specific binding sites
- Use active enzymes on amorphous cellulose samples
- Perform temperature and pH studies